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Toward the virtual cell: Automated
approaches to building models of
subcellular organization ‘‘learned’’
from microscopy images
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We review state-of-the-art computational methods for

constructing, from image data, generative statistical

models of cellular and nuclear shapes and the arrange-

ment of subcellular structures and proteins within them.

These automated approaches allow consistent analysis of

images of cells for the purposes of learning the range of

possible phenotypes, discriminating between them, and

informing further investigation. Such models can also pro-

vide realistic geometry and initial protein locations to

simulations in order to better understand cellular and sub-

cellular processes. To determine the structures of

cellular components and how proteins and other

molecules are distributed among them, the generative

modeling approach described here can be coupled with

high throughput imaging technology to infer and represent

subcellular organization from data with few a priori

assumptions. We also discuss potential improvements to

these methods and future directions for research.

Keywords:.cell modeling; cell shape; generative models; image
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Why do we need spatially accurate models
of cell organization?

Understanding the relationship between cellular structure and
function is a fundamental biological problem. Microscopy
technology has progressed dramatically over recent decades
and provides images with ever-increasing resolution, accuracy,
and specificity. Together with these advances, several compu-
tational approaches for dealing with such data, in particular
cell image data, have been described in the past 15 years [1, 2].
These are often combined to arrive at new insights about
cellular and subcellular processes. Examples include under-
standing the differences in protein subcellular location patterns
in cells obtained from normal and diseased tissues [3] or
over the cell cycle [4], modeling cytoskeletal dynamics [5, 6],
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learning the range of possible nuclear [7, 8] and cellular [9–12]
shapes, and learning the effects of gene expression changes on
cellular shapes [13].

Proteomics research explores the function, structure,
variability, interaction, and location of the large number of
proteins expressed in cells. Due to the dependency of function
and interaction on location, one of the most important tasks is
to identify the subcellular locations of proteins, namely their
spatial distributions in various organelles [14–16]. Indeed,
some subcellular structures are defined by the locations of
specific proteins, e.g. cytoskeletal structures are composed of
polymerized tubulin, actin, or intermediate filament proteins
that help shape, position, and even create organelles.

Results for subcellular location are typically captured in
words, such as GO terms. However, this approach does not
readily support realistic modeling of the influence of cell
organization on behavior and is often not sensitive enough
to capture changes in patterns caused by drugs or inhibitory
RNAs. An important alternative is to use computational
analysis of images to produce spatial models capable of encod-
ing observed phenotypes, and the parameters of such models
for different samples (e.g. in the presence of different pertur-
bagens) can be studied and contrasted in a consistent, repro-
ducible way. In addition, models for organelle surfaces and
protein location can provide realistic geometry and molecular
distribution for reaction-diffusion-type simulations (e.g. [17])
of important cellular processes in order to support or refute
hypothetical mechanisms that might explain those processes.
These and other kinds of simulations of cellular structures
have already produced interesting insights into the workings
of the cell [18–22]. Ultimately, applications of this kind
of modeling might significantly affect medical diagnosis.
These examples help motivate this paper’s topic.

This overview addresses current work on learning detailed
models of cellular structure to support comparison and simu-
lation studies. We describe general modeling strategy and
methods for automatic learning of models of cellular shapes,
organelles, and protein distributions from microscopic image
data. Finally, we describe potential avenues for future
research.

How do we construct models of cell
structure?

Any model of cellular structures should give a description of
the statistical relationship between the variables of interest,
i.e. a mathematical description of the probability of any com-
bination of values assigned to these variables. These will allow
evaluation of the likely behavior of one set of variables given
conditions on another. For example, the microtubule catas-
trophe rate might be more likely to be lower in mitosis com-
pared to interphase, with exceptions being due to cell-to-cell
variability. The model might just include the mean rates for
mitosis and interphase, or it could additionally contain the
standard deviation of each rate. The latter model states that
the catastrophe rate of interphase cells is normally distributed
with that mean and standard deviation (and similarly for
mitotic cells). Note that models may not explicitly state their

statistical assumptions but still have them. For example, the
common differential equation-based model representing
protein interactions specifies that the rate at which a particu-
lar protein’s concentration changes is solely a function of
its and other proteins’ concentrations and is unaffected by
random noise [23].

Models have some number of parameters, e.g. the mean
catastrophe rates in interphase andmitosis, that allow them to
represent a range of behaviors or patterns. A specific behavior
is selected with a corresponding set of values for those
parameters, e.g. lower rates in mitosis. These parameters
can be chosen automatically by statistically estimating them
from collected measurements (called training data) of the
system of interest. Data are processed into a consistent, com-
parable and measurable form, usually vectors of numeric
values of a specified length (called feature vectors), e.g.
multiple measurements of the length of a microtubule over
time (from which catastrophe rate could be inferred).

There are two major categories of statistical models,
discriminative [24, 25] and generative [11, 12, 26], and both
have been applied to the study of subcellular organization and
protein patterns. Discriminative models only represent the
probability of a feature vector being from each particular
pattern and explicitly do not consider the physical or bio-
logical mechanism by which the measurements (images) were
generated. We can only ask of a discriminative model: how
likely is it that this feature vector comes from a particular
pattern?

Generative models, on the other hand, also represent the
probability of observing a particular feature vector when it
comes from a particular pattern, and they even commonly
contain variables that are not measured (latent variables). An
example of a latent variable would bemicrotubule catastrophe
rate in the case that the only variables measured were the
lengths of the microtubules in the cell. Thus, a different query
can be made of a generative model: what are examples of
images I would expect for a particular protein in a given cell
type under a specific condition?

As an illustrative example of the advantages of using a
generative model, suppose that we wish to create a simulation
in which the distributions of many proteins are represented in
a single cell. We could measure this by imaging all of them
simultaneously. However, technology for imaging more than a
few proteins in the same sample is not available, especially for
live cells. Even if we wish to build up a model from measure-
ments of colocalization of subsets of the proteins, there are
too many combinations to feasibly image (for 1,000 proteins,
there are 166 million combinations of three proteins).
However, generative models can approximate the colocaliza-
tion of these proteins. We can build a generative model of the
pattern of each protein individually that depends only on
the cellular and nuclear shapes of the cell. We can then
hypothesize that proteins with similar model parameters
are colocalized, and can create synthetic cell images in which
these proteins are placed in the same structures. This gives us
an image of the same cell showing the locations of many
proteins. Extending this model to include dependency on
structures other than the nuclear and cell membranes, such
as the cytoskeleton, would give an even more accurate
synthetic cell.
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Generative models can also be used to find probable values for
latent variables. While a discriminative model may easily
distinguish between two images of microtubules from differ-
ent conditions (say wild type and treated with nocodazole,
which depolymerizes microtubules), a generative model can
include latent variables parameterizing the process of micro-
tubule growth, e.g. number and average length of microtu-
bules. Thus, unlike with discriminative models, learning the
parameters of the generative model could encode the basis for
the differences between patterns.

As previously proposed [11], models of cellular structures
ideally should be:

(i) automated: learnable automatically from images;
(ii) generative: able to synthesize new, simulated images

displaying the specific pattern(s) learned from images;
(iii) statistically accurate: able to capture pattern variation

between cells;
(iv) compact: representable by a small number of parameters

and communicable with significantly fewer bits than the
training images.

In the context of this paper, one key issue in building
models of cells is that they need to contain modular pieces
which depend on each other in order to capture correlations
between structures of the cell when synthesizing an image. For
example, endosomes lie between the nuclear and cell mem-
branes, so to synthesize an image displaying an endosomal
protein’s distribution pattern, one might generate a nuclear
shape, then, given that the cell membrane is always outside
the nuclear membrane and their orientations are correlated
[11], generate a cell shape whose probability distribution
depends on the selected nuclear shape, and finally generate
endosome-shaped objects so that they lie between the two
shapes. Combined together, these pieces produce a generated
image which is analogous to a real multichannel microscope
image. Open source software components that can learn such
conditional models and synthesize instances as images are
available at http://CellOrganizer.org.

One important issue in modeling is the balance between
accuracy and precision and how it is affected bymodel complex-
ity, i.e. the number of parameters. We want to choose a level of
complexity that will allow the model to generate images resem-
bling real ones while maintaining computational feasibility. For
example, a nuclear shape approximated by an ellipse could not
incorporate bends or blebs, but a model using polygons with
thousands of vertices might take hundreds of thousands of
images to have its parameters properly estimated.

Parametric models can be built for nuclear
shape

A cell’s nuclear and plasma membranes form the largest
partitions of cellular material and so are the first structures
to model. We start by modeling nuclear shape as the
foundation for the rest of the cell in two-dimensional (2D)
and three-dimensional (3D) images, and then we model cell
shape as statistically dependent or constructed upon nuclear

shape (but dependency in the other direction would also be
reasonable).

By images of nuclei, we mean images where the inside of
the nucleus is marked by a fluorophore and so has a higher
intensity than the outside of the nucleus, whether what is
marked is DNA, histone, or something else. Since the nuclear
envelope breaks down and chromatin condenses during mito-
sis, our model is restricted to interphase nuclei. The shape of
the imaged nucleus is represented as a binary image or mask,
i.e. a 2D or 3D array of pixels with each pixel being one or zero,
or part of the shape or not. To get a shape image, the raw
image is binarized by, e.g. selecting a threshold intensity value
and setting pixels in the shape image to one if the correspond-
ing pixels in the raw image are greater than that threshold and
setting them to zero otherwise.

2D nuclear shapes

An initial parametric nuclear shape model was built from
2D images [11]. Nuclear shapes were captured well using
two simple curves that together defined the region of the
2D plane occupied by the shape. If the nuclear shapes were
approximated by an ellipse, the major and minor axes of
that ellipse could be considered the axes of a coordinate
system for these curves. One curve encoded bending of the
nucleus to either side of the major axis (the bent axis is called
the medial axis), and the other represented the width of the
nucleus at every point along that bent axis. The procedure is
illustrated in Fig. 1. Each curve was represented as a B-spline
with five parameters. Another parameter was added for
the overall length of the nucleus along themajor axis, bringing
the total number of parameters to 11. Variation between
all the individual nuclei’s parameters was modeled as two
multivariate Gaussian distributions, one for each curve, and
thus could be sufficiently summarized using just the mean
vectors and covariance matrices of those distributions.
Generation of new nuclear shapes can be done simply by
randomly sampling curve parameters from the learned distri-
butions and drawing the nuclear image using those curves.
Thus, a large set of realistic nuclear shapes can be
represented, compared, and synthesized with a model that
is not much more complicated than one representing the
nucleus as an ellipse.

3D nuclear shapes

Real nuclei are 3D, however, and the 2D nuclear shape model
has been extended to 3D [12]. To do this, the 3D nuclear shape
was modeled as a mesh defined in cylindrical coordinates.
By mesh, we mean a set of 3D vertices connected by polygons
to form a surface without holes (this is the 3D analog of
a polygon in 2D). This mesh’s vertices were placed on
the boundaries of the shape image in a grid pattern, so
the vertices were positioned at a set of fixed angles (with
angle being in the plane of the bottom of the cell) and at a set
of fixed heights above the bottom. The model encoded the
distance of each vertex from the center of the nucleus, with
distance being measured in the horizontal plane. A smooth
surface (analogous to the curves in the 2D case) was then
fitted to the mesh to represent it with a few parameters (i.e.
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562) rather than with all the distance values (i.e. 6,480). This
also served to remove high frequency variation in the
boundary due largely to measurement noise (observable as
small bumps in Fig. 2A). The top and bottom of the surface
were kept flat. The distribution of all of these parameters was
again shown to be captured well by a multivariate Gaussian.
Figure 2 illustrates the generative process using a real
nuclear shape. Having learned that probability distribution,
we can sample from it to generate new nuclear surfaces.

Parametric models concisely capture
cell shape

The next component of the generative framework is the shape
of the plasma membrane, hereafter referred to as the cell
shape, and it will be conditioned on the nuclear shape gener-
ated by the models in previous section. These models work

well for 2D and 3D images of cultured cells with fibroblastic
shapes.

2D cell shapes

As previously stated, a nuclear shape fits within its cell shape,
and their orientations are correlated, so a conditional relation-
ship between the models for each shape is required to encode
these effects. One approach [11] was to rotate each nuclear and
cell shape pair so that the nuclear major axis was vertical and
if necessary flip the shapes so that the majority of the nuclear
shape’s pixels was on the same side of the major axis for
all cells. The first operation allows the model to capture
correlation due to orientation, as without this alignment
orientation-related effects would cancel out each other. The
second operation will capture correlations between lateral
asymmetry of nuclei and their cell shapes. Cell shape was
then modeled as a polygon defined in polar coordinates with
the origin at the nuclear center andwith vertices at angles with
one-degree increments (like a 2D version of the 3D nuclear
shape model). In order to make the cell’s size relative to the
nucleus’ size, the value modeled at each angle was the ratio of
the cell radius at that angle to the nuclear radius. Thus, each
cell shape was represented as a vector of length 360.

Recalling the accuracy versus precision trade-off, a covari-
ance matrix encoding how each of the vertices correlates with
the others would require 64,980 values to be estimated. With
far too few cells (perhaps a few hundred) to estimate all of
these, only the largest modes of variation in the cell boundary
were estimated using principal component analysis (PCA).
PCA rotates a set of multidimensional points so that the

Figure 1. Illustration of medial axis model fitted by B-splines for
nuclear shape. The original nuclear image (A) was processed into a
binarized image (B), in which the nuclear object consists of the white
area. The nuclear object was rotated so that its major axis is vertical
(C) and then converted into the medial axis representation (D). The
horizontal positions of the medial axis as a function of the fractional
distance along it are shown by the symbols in (E), along with a
B-spline fit (solid curve). The width as a function of fractional
distance is shown by the symbols in (F), along with the corresponding
fit (solid curve). Scale bar: 5 mm. (From [11]).
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new first dimension contains as much of the variance in the
points as possible, the new second dimension contains the
plurality of variance left in the data, and so on. The 10 largest
modes captured 90% of the total variation in all of the original
cell shapes, and these feature vectors of length 10 were again
modeled with a multivariate Gaussian. A new cell shape can
be generated from the statistical model by sampling from that
normal distribution and reversing the transformations listed
above to retrieve a full cellular shape polygon.

3D cell shapes

The cell shape model was also extended to 3D [12]. As with the
3D nuclear shape model, cell boundaries were modeled as
meshes defined in cylindrical coordinates. Distances were
represented by a set of ratios as with the 2D cell shape model
to ensure that the cell contained the nucleus, but with one
ratio at each height and angle pair. PCA needed 20 modes to
capture 90% of the total variation.

Nonparametric models capture more
complex shapes and relationships

Almost any parametric model involves enough simplification
to have trouble representing all the complexities of the
objects being modeled. Different types of cells may drastically
differ in their shapes: neurons have a branching structure,
neutrophils have wrinkled surfaces, and epithelial cells can
be anywhere from column-like with microvilli to goblet cells
with large invaginations to quite flat. So far, we have focused
on cells having fibroblast-like, ‘‘fried egg’’ shapes such as
those of cultured HeLa cells. The 2D model of the cell’s outline
assumes that any point on a shape’s boundary is visible from
the center of the cell. Such an assumption does not hold in

many cases for cells having branching or bottlenecked (like
pseudopodia) projections on their boundaries. Additionally,
the above dimensionality reduction tends to discard small
details.

An alternative to parametric modeling is the nonparamet-
ric approach, i.e. to let the shape representation and proba-
bilistic model grow in detail with the number of data available
rather than compute a fixed set of summarizing statistics from
the data [7, 8]. The set of possible shapes is defined as any
shape that can be formed by interpolating between shapes
observed in real images, and the probability of observing any
shape is related to how much it resembles those observed
shapes.

By shape interpolation, we mean creating a new shape
from two others that appears to be somewhere between the
two and takes on some of the character of either. For example,
consider interpolating between the shape of a round nucleus
and that of an elongated, bent nucleus. As with linear inter-
polation between two real values, the shape would be rounder
(more like the first image) the closer the interpolation factor is
to zero andmore elongated and bent the closer it is to one. The
interpolation process also produces a measure of the distance
between the two shapes [27].

A distance matrix can then be computed using the dis-
tances between every pair of shapes. From this matrix a set of
points representing the observed images can be derived using
multidimensional scaling (which is like PCAwhere the input is
a distance matrix). This arrangement of points is termed a
shape space. We show an illustration of a shape space in Fig. 3.
Because this space is defined using the interpolation-based
distance measure, images of shapes can be synthesized from
any point in the shape space using the same image inter-
polation method.

As can be seen, the above approach does not make any
assumptions about the shapes (other than that each is a
single, connected shape). The probability distribution is
defined using all of the input data. In order to assign a
probability to each point in the shape space, including points
representing unobserved shapes, we set the probability to be
proportional to the sum of a set of small Gaussians, with each
Gaussian’s mean at an observed shape (this is called kernel
density estimation). As a result, the probability of a shape is
higher near a higher density of observed shapes.

Figure 2. Nuclear shape representation. A: Surface plot of a 3D
HeLa cell nucleus. B: Unfolded surface of the nuclear shape in a
cylindrical coordinate system. The surface plot shows the radius r as
a function of azimuth u and height z. C: B-spline surface fitted to the
unfolded nuclear surface. (From [11] and [12]).
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The shape and probability models together allow one to syn-
thesize new examples of plausible nuclear or cellular shapes
even given a number of images that would be considered too
low to estimate a parametric model with this level of detail.
However, this model is very large in terms of memory: it stores
all the observed shapes as part of the model (this problem can
be reduced by only saving the most important examples).

Models of vesicular organelles can be
learned directly from images

Themost difficult and important piece in the generative frame-
work is the representation of subcellular components and
accounting for protein spatial distribution patterns within a
cell. Much work has been done, but this area is wide open due
to the complexity and intricacy of both membrane-bound and
structural subcellular components.

2D objects

Granular and discrete vesicular organelles like endosomes,
lysosomes, and peroxisomes are approximately ellipsoidal or
bead-like and appear as small objects in, e.g. fluorescent
confocal images of cells labeled for a vesicular protein. We
have therefore previously built object-based models from 2D
images [11]. An object was detected as a contiguous region
of high-intensity pixels in a cell image that was surrounded
by lower-intensity pixels. A vesicle’s appearance can be

approximated as a 2D Gaussian distribution because a 2D
image of protein inside a vesicle would show intensity
decreasing with the distance from the center of the vesicle,
as expected if the intensity in a given pixel were proportional
to the volume that underlies that pixel. Since vesicles were
often touching or overlapping, regions of high-intensity pixels
might have contained multiple objects, so we separated them
as a preprocessing step. Probability distributions were then
fitted to the number of vesicles in a cell and the size, intensity,
and position of each vesicle. The position of each object
was represented in polar coordinates, with the angle being
between the object’s position and themajor axis of the nucleus
and the radial distance being relative to the nearest points on
the nucleus and the cell membrane. With these four distri-
butions, it is simple to synthesize a new vesicular pattern by
first sampling the number of objects and then, for each object,
sampling its size, intensity, and position. Figure 4A displays
an example of a synthesized image showing a lysosomal
pattern.

Extension to 3D

The 2D object-basedmodels were easily extended to 3D [12]. An
example of a synthesized 3D image showing a lysosomal
pattern is displayed in Fig. 4B.

Indirect learning can model complex
network structures

Object-based models are inappropriate for proteins that form
network distributions such as tubulin. However, microtubules
often cross and pile up near the center of the cell, so,
unlike with vesicles, individual microtubules cannot be easily
detected. As a result, it becomes difficult to directly estimate
parameters for their distributions except in special circum-
stances (e.g. speckle microscopy [28]) that do not apply on a
proteome scale because they require suitable polymerization
and depolymerization rates. On the other hand, indirect
learning, a form of automated guess-and-check, provides
an alternative for parameter estimation. Its principle is to
generate a library of synthetic images from a model with

Figure 3. Plot of the first two components of the low-dimensional
representation of the nuclear shape computed by the shape inter-
polation method discussed in the text. Each small circle corresponds
to one nuclear image. Images associated with specific data points
are shown on the left (diamonds) or across the bottom (squares).
Each dark square corresponds to each image shown in the
horizontal bottom series of images. Likewise, each light diamond
corresponds to each image stacked vertically. Note that the
method separates different modes of shape variation (bending
and elongation) into separate coordinates (vertical and horizontal)
(from [7]).

Figure 4. Example synthetic images generated by models learned
from images of the LAMP2 (lysosomal). A: A 2D image generated by
2D modeling. The DNA distribution is shown in red, the cell outline in
blue, and the lysosomal objects in green. B: A 3D image generated
by 3D modeling. The nuclear surface is shown in red, the cell
surface in blue, and the lysosomal objects in green. (From [12]).
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various values for those parameters and estimate the model
parameters corresponding to real images as those from the
synthetic image that most closely resembles the real images.
This resemblance is measured using another set of features
that can be readily computed from both images and does not
depend on identifying the microtubules.

3D microtubules

Indirect learning has been used to learn the parameters of a
model of 3D microtubule distributions from images of fixed
cells [5]. The parameters of this model were the number of
microtubules, their lengths, and the degree to which they grew
in the same direction (collinearity). Synthesis of a microtubule
image from this model is straightforward and is inspired by a
growth process in real cells. First the number of microtubules
is sampled, then the length of each microtubule is sampled
individually, and lastly collinearity is sampled. A centrosome
location is chosen and the microtubules grow from it.
Small line segments representing newly grown portions of
the microtubule are added incrementally, and their tendency
to grow in the same direction as previous segments is con-
trolled by the collinearity parameter. Once a microtubule’s
desired length has been reached, the simulation for that
microtubule ends. Finally, synthetic images are blurred with
a microscope’s point spread function to emulate the appear-
ance of a real image. The features used to compare real
and synthetic images included ones that described intensity
histograms and intensity as a function of distance from
the estimated centrosome position. The entire process is
illustrated in Fig. 5, and a 2D slice from a generated 3D image
is shown in Fig. 6A.

Addition of free tubulin

The above model of microtubule distributions has been
extended to model the distribution of free tubulin monomers
[6]. To do so, we estimated histograms of free tubulin inten-
sities from pixels a distance away from the high-intensity
microtubules in images of live cells (fixed cells lose free
tubulin during permeabilization). Synthetic images of free

tubulin were added to synthetic microtubule images to make
a complete synthetic tubulin distribution. Figure 6B is a 2D
slice of such an image.

Models can be combined to build more
detailed models

A major goal of work in this area is to develop cell models that
incorporate realistic spatial subcellular distributions for many
or most proteins. It is difficult to imagine using multicolor
microscopy when the number of proteins is on the order of
thousands. An alternative is to combine generative models
learned from separate sets of images. Unfortunately, this
procedure assumes that these distributions are independent.
However, endosomes are closely dependent on microtubules
during transport, and lysosomal proteins may be present
together in the same vesicles. This introduces the need for
learning the conditional structure of these patterns. Given
the large number of possible combinations that need to be
explored, generative models can be an important tool for
learning the conditional structure by testing in silico which
conditional relationships make accurate predictions about
cell behavior.

Making generative models dynamic is the
next step

A natural next step in modeling cellular and nuclear shapes is
to consider temporal evolution. In recent work (Buck, Rohde &
Murphy, in preparation), we have used the nonparametric
shape representation to produce a random walk-based simu-
lation of both cellular and nuclear shapes over time and in 3D.
The simulation iteratively moves through the shape space by
Brownian motion. Further work is needed to evaluate this
model by comparing the shape-space trajectories of time-
series images of real cells with synthetic trajectories. The
dynamic behavior of subcellular components like tubulin

Figure 5. Overview of the approach to indirectly
learning parameters of microtubule distribution
(from [5]).
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distributions [29, 30] can be added and moved along with cell
and nuclear boundaries and, later on, influence evolution of
shape.

How about models of other cellular
components?

Aside from vesicular components and microtubule networks,
there are many other complex cellular components whose
distributions need be modeled. The actin filament network
is one; although it is also a network distribution and might be
modeled and learned inversely as were microtubules, it lacks a
well defined organizing center (like the centrosome for micro-
tubules) and has more complex processes such as bundling
and branching. Therefore, a more intricate model might be
needed to represent actin networks. Partial attempts to do so
have beenmade [20, 22]. Taking a hint from the nonparametric
shape space representation of cellular and nuclear boundaries
and another from the implicit solvent concept in models
of protein dynamics (which represents the mass action of
solvent rather than the small effects of many individual water
molecules and ions), we may see in certain applications a
sophisticated prediction of probable actin network structure
and force generation across the cell membrane rather than
an explicit representation of each molecule or filament com-
posing it. There has also been extensive work on learning
polymerization models from movies of moving cells [31].
Other filament networks and their interactions with mem-
branes have been modeled as well [32].

Gaussian-shaped object models are inappropriate for
organelles such as the ER, and building a learnable generative
model for reticular compartments has not yet been described.

One might represent the general membrane shape as a surface
with flexible parameterization (e.g. a mesh or shape image)
that could be directly repositioned at any point due to specific
applied forces, e.g. the cytoskeleton or membrane proteins.
Another representation might use a statistical description of
membrane evolution akin to [33].

Ultimately, the membrane model should permit topo-
logical changes due to budding, fusion, and even cell
division. This would introduce the challenge of producing
forces to move simulated molecules away from the neck of
a budding vesicle or the interface of a fusing vesicle.
Probabilistic modeling of a changing number of entities
where the interactions between the entities influences the
change in number may prove difficult, but this could lead
to the creation of new statistical representations or the
adoption of unused ones.

Much remains to be done

In this paper, we have discussed the need for and reviewed
methodological approaches to creating models of cells and
their components. Such generative models complement the
traditional discriminative method, which excels at differenti-
ating between patterns, by modeling the process from biology
and physics to visible data (e.g. microscopy images) and so
better explaining the causes of pattern differences.

In the future, given the ability to learn parameters of these
models, it will be important to investigate quantitative differ-
ences in the patterns between cell types and conditions as
these will correspond to differences in cellular function.
Furthermore, synthesizing instances of cells from models to
initialize simulations will allow making predictions and,
coupled with proper experimental design, validating or
refuting them, increasing our confidence in our understanding
of biology and ultimately expediting development of medical
interventions. While much work remains to be done, the
possibility of deep, comprehensive, and quickly accumulating
understanding of cellular organization and behavior seems
within reach.

Figure 6. A: A 2D slice example with the maximum plane intensity
from generated 3D image using microtubule model. B: A 2D slice
example with the maximum plane intensity from generated 3D image
using microtubule model plus free tubulin model.
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