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Abstract

Microtubules are filamentous structures that are involved in several important cellular processes, including cell division,
cellular structure and mechanics, and intracellular transportation. Little is known about potential differences in microtubule
distributions within and across cell lines. Here we describe a method to estimate information pertaining to 3D microtubule
distributions from 2D fluorescence images. Our method allows for quantitative comparisons of microtubule distribution
parameters (number of microtubules, mean length) between different cell lines. Among eleven cell lines compared, some
showed differences that could be accounted for by differences in the total amount of tubulin per cell while others showed
statistically significant differences in the balance between number and length of microtubules. We also observed that some
cell lines that visually appear different in their microtubule distributions are quite similar when the model parameters are
considered. The method is expected to be generally useful for comparing microtubule distributions between cell lines and
for a given cell line after various perturbations. The results are also expected to enable analysis of the differences in gene
expression underlying the observed differences in microtubule distributions among cell types.
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Introduction

Microtubules play an indispensable role in subcellular processes

such as cell movement, cell division and intracellular transporta-

tion. In turn, these processes are known to play a role in other

biological phenomena such as wound healing, and cancer

metastasis. Extracting information about the organization of

microtubules in different cell lines could potentially shed light on

the roles of microtubule associated proteins in that organization.

While limited information is available about variation in

microtubule distributions [1,2], information on those distributions

in intact cells for different cell lines has not been readily available.

Most microtubule studies have focused on dynamics and

interactions with drugs and microtubule associated proteins [3–

6]. We believe that the ability to obtain reliable estimates of the

overall organization of microtubules in whole cells could allow

quantification of their dependency on different pertubagens,

drugs, mechanical stimuli, etc.

Electron microscopy can be used to trace microtubules, but the

specimen preparation for imaging does not allow for intact cells to

be imaged. Fluorescence microscopy can be used to image intact

cells, but microtubules typically overlap and are often densely

packed inside cells. It is very difficult, if not impossible, to

manually trace each individual microtubule in a confocal or wide-

field fluorescence microscopy image in order to obtain accurate

estimates of microtubule distribution parameters. Hence previous

work comparing cell lines has often focused on the tips of

microtubules where tracing is possible, or the comparison has been

only qualitative [7].

We therefore previously developed an indirect method for

estimating natural, interpretable and quantitative parameters such

as the number and the mean length of microtubules from 3D

fluorescence microscopy images of microtubules [8,9]. These

parameters are important because they represent basic biophysical

characteristics of tubulin polymerization. The basis of the method

is to use a generative model of microtubule patterns (Figure 1) to

synthesize 3D images for many values of the model parameters,
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and then to pick the image that best matches the given real image

(and thus to estimate the parameters that could have produced it).

Our original method utilized 3D images, but 3D images of intact

whole cells are much less commonly available than 2D images. We

therefore describe here a method of estimating 3D microtubule

model parameters from 2D image fluorescence microscopy images

of tubulin. We test our approach on the 3D images of HeLa cells

previously used to develop the model, and then use it to compare

microtubule distributions in different cell lines.

Figure 2 provides an overview of the framework introduced in

this paper. There are two sub-systems. One is for generating

synthetic images of microtubules, and the other is for estimating

the microtubule model parameters for real images through

comparison with the synthetic images. We first obtained 2D

fluorescence microscopy images for eleven cell lines. Each image

contains two channels, one for microtubule staining and the other

for nuclear staining. The images are segmented to find individual

cell and nuclear boundaries. For each cell, we estimate a Point

Spread Function (PSF), centrosome location and single microtu-

bule intensity. On the basis of the segmented 2D cell and nuclear

shapes, approximate 3D cell and nuclear morphologies are

generated. Given the model (Figure 1) and ranges of allowed

values of its parameters (number of microtubules (N), mean of the

length distribution (mu) and collinearity (a)), synthetic images of

microtubule distributions are generated for each 3D morphology

for each combination of allowed parameter values. Each raw

synthetic image is then convolved with the estimated PSF and

multiplied with the estimated single microtubule intensity to make

it comparable to the real image. Numerical features are then

calculated on every real cell image and the synthetic images for it.

The matching method then selects one set of parameters for which

the synthetic image is the closest to the real image in the feature

space.

Using this indirect method, we estimate the model parameters

for 2D images from eleven human cell lines, and analyze the

resulting parameters.

Results

3D Cell and Nuclear Shape Generation from a 2D Slice of
Microtubule Channel and Nucleus Channel

In our earlier work, we described an indirect approach to

estimate parameters of a generative model of microtubules that

was conditioned on the shape of the cell and the nucleus [8]. These

shapes were estimated from a 3D confocal stack of images of a

total protein stain and a DNA stain respectively. Since the images

we analyze in this paper are only 2D slices, we developed an

approach to estimate an approximate 3D shape of a cell and

nucleus from a 2D slice (purely for the purpose of being able to

generate a synthetic microtubule distribution). The location of the

centrosome was also estimated (see Methods). Figure 3 shows an

example of microtubule and nucleus images and the resulting

approximate 3D cell and nucleus shape models (see details in the

section of ‘‘3D cell and nuclear morphology generation’’ in

Methods). We also describe a method to detect the 3D coordinate

of the centrosome from the microtubule image using a two step

approach (see Methods). These models and centrosome location

were then used to generate microtubules in the cytosolic space.

Recovering 3D Microtubule Generative Model
Parameters from 2D Images: comparisons with real 3D
estimates

To test the accuracy of estimating microtubule parameters from

2D images, we applied our new 2D method (see Methods) using

the central slice (at half height of the cell) of 3D HeLa cell images

and compared the estimated parameters with those from the 3D

method. The half height was chosen as the preferred slice because

the 2D images used later were also acquired at half the height of

the cell. We computed the mean absolute percentage error

(MAPE) in each of the parameters estimated from the 2D images

assuming that the estimated parameters from the 3D method were

correct. Results are shown in Table 1 for 42 cells. From the table,

we can see that the estimates of the number of microtubules and

collinearity from a single 2D slice are reasonably close to those

from the entire 3D image. However, the MAPE for the mean

length appears to be somewhat larger. We will aim to reduce this

discrepancy in future work. However, we note that most cells were

estimated to have mean length of 10 or 15 microns (see the section

of library generation in Methods) using the 3D method on the

original 3D images. Therefore a small deviation in the estimates of

5 microns (the increment of the range of allowed values of mean

length) would cause a MAPE of 50 or 33. The table also shows a

Figure 1. Growth model for generating microtubules depen-
dent on cell and nuclear shapes. Each microtubule starts from the
centrosome, and randomly grows to the second point on the lateral
surface of a cone whose aperture is 2a. Then the microtubule grows the
same way until it hits the cell or nuclear shape boundary and is not able
to step further within the cytosolic area. At this time, we relax the
collinearity requirement but still confine the next direction under the
local constraint alocal. Moreover, we also keep on checking a
consecutive multiple (30) steps, and require that there are less than
or equal to 3 pairwise vector angles that are larger than the global
constraint aglobal. Beginning with an empty (black) cytosolic area
(shaped by cell and nuclear boundary), we add one to the intensity of
the pixel which a microtubule crosses. In this paper, we used every step
of growth to be 0.2 microns (1 pixel). For the two constraints on the
collinearity which controls the curvature of each microtubule and the
local and global rebounding issues, we used alocal to be 63.9 degrees
and aglobal to be 120 degrees. The figure only illustrates the procedure
of growth in 2D for better visualization but can be easily imagined to
extend to 3D.

Comparison of Microtubule Distributions
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comparison of the true cell heights and the estimated ones, with

the results showing that they are reasonably close.

Recovering 3D Microtubule Generative Model
Parameters from 2D Images: simulated experiments

We estimated how well our recovery method can perform using

simulated images for which the correct parameters were known.

For one cell geometry (cell shape and nucleus shape), a library of

3D synthetic images was generated with predefined parameters as

a validation bed; then 5 other testing libraries were generated

using different random seeds. The predefined parameters for the

validation bed were estimated from each testing library separately.

The resulting errors are shown in Table 2 and indicate that the

system accurately recovers model parameters from 2D slices of

synthetic images.

Estimating Microtubule Parameters for Images of Eleven
Cell Lines

3D microtubule model parameters were estimated from 2D

fluorescence microscopy images of eleven cell lines collected as

described previously [1], with the application of the whole

framework including library generation, feature calculation and

matching (see Methods). This dataset consisted of 112 A-431 cells,

114 from U-2OS cells, 94 U-251MG cells, 38 RT-4 cells, 110 PC-

3 cells, 51 Hep-G2 cells, 35 HeLa cells, 77 CaCo2 cells, 66 A-549

cells, 70 Hek-293 cells and 54 MCF-7 cells. Figure 4 shows

examples of query images and the corresponding images

synthesized using the parameters estimated from them. Note that

the synthetic images are not ‘‘exactly’’ the same as the

corresponding real ones in every single microtubule, because the

goal of the generative models is to learn the underlying distribution

of microtubules from which the real images were drawn. Hence

from Figure 4, we can see that synthetic images are similar to real

ones in terms of the distribution of microtubules. There is an

underlying assumption that the cells from the same cell line tend to

have some level of consistency in the distribution of microtubules.

Therefore, we measured the coefficient of variation (the ratio of the

standard deviation to the mean) for the estimated parameters of

real cells. The resulting values for the number of microtubules

ranged from 0.28 to 0.60 and from 0.21 to 0.43 for the mean of

the length distribution. We show the frequency distribution of each

of the three parameters for every cell line in Figure 5. It shows

that most of the cell lines have quite close to a normal distribution

for both the number of microtubules and mean length. Some may

deviate a little to have a Gamma distribution-like shape. For the

collinearity, due to the computational efficiency, we only used

three candidate values in the library of synthetic images, so we

cannot draw any significant conclusions. The scatter plot of the

two dimensional parameter space (number of microtubules and

mean length) estimated from those cell lines is shown in Figure 6.

The plot shows the variation in number of microtubules, in mean

length and in joint correlation of the two. We will compare them

in the next section.

Figure 2. An overview of the framework introduced in this paper. The framework contains two sub-systems, one for generating 3D synthetic
images of distributions of microtubules (A), and one for estimating and comparing the model parameters of distribution of microtubules from real 2D
images of eleven cell lines (B).
doi:10.1371/journal.pone.0050292.g002

Comparison of Microtubule Distributions
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Comparing Microtubule Distributions Across Eleven Cell
Lines

Comparing bivariate distributions of the number of

microtubules and the mean of length. We compared the

bivariate distribution of the estimated number of microtubules and

the mean of length across different cell lines. We first compared

the covariances using Box’s M test. The p-value for this comparison

was<0 which indicates that we can readily reject the null

hypothesis of homogeneity of covariances. Next, we used the

pairwise Hotelling’s T2 test to test whether there were significant

differences between the bivariate means of the distributions

between cell lines. Because there is strong imbalance of the

number of cells among different cell lines, we repeated the pairwise

testing 100 times each for subsamples of 35 cells (the minimum

number of cells for a cell line) for every cell line and then the

minimum p-values from the repeats (after Bonferroni correction)

were reported. All the pairwise p-values were then adjusted using

family-wise Bonferroni correction for multiple testing [10]. We

show the p-values in the lower triangular part of Table 3, and the

ones denoted with ‘‘*’’ indicate significant differences. In addition,

given the Hotelling’s T2 statistics, we built a hierarchical clustering

tree shown in Figure 7 (A), and the rows and columns of the

lower triangular part of Table 3 are sorted according to the tree.

Comparing multivariate distributions of numerical

features on real images. As a comparison to these statistical

tests of indirect parameter estimates, we repeated the calculations

mentioned above using features calculated directly from real cell

images. We used the first two principal components, which

accounted for 99.99% of the total variance in feature space, to

represent the multivariate features. The p-value for covariance

Figure 3. Generation of 3D cell geometry (cell shape and nuclear shape) from real 2D slices of the microtubule and nucleus
channels. (A) Example of a real 2D cell image (tubulin channel) and its approximate bottom shape. (B) Cartoon of an X-Z projection of a cell on a
substrate. (C) Example of a generated 3D cell shape containing 8 stacks (1.6 microns). (D) Illustration of inputs and outputs for the procedure.
doi:10.1371/journal.pone.0050292.g003

Table 1. Comparisons of estimated parameters of distribution of microtubules between original 3D HeLa images and their 2D
central slices.

Number of microtubules Mean of length distribution Collinearity (cosa) Cell Height

23.9619.7 43.1623.9 1.9662.72 21.4613.1

The values in the second row are MAPEs of the recoveries of parameters from the 2D slices, assuming that the parameter estimates from the 3D images are correct.
doi:10.1371/journal.pone.0050292.t001

Comparison of Microtubule Distributions
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homogeneity test was<0. The p-values for the pairwise Hotelling’s

T2 test of bivariate means of distribution of the first two principal

components (to represent multivariate means of the distribution of

features) are in the upper triangular part of Table 3. The

hierarchical tree on the basis of the statistics is displayed in

Figure 7 (B), but the rows and columns of the upper triangular

part of Table 3 are also sorted according to the tree in Figure 7
(A) for consistency with the lower triangular part. The comparison

using image features indicates that 44 out of 55 show statistically

significant differences (of which 27 were comparisons involving

HeLa, A-431 and U-2OS). However, when the estimated model

parameters were compared (in the lower triangular part of Table 3
and Figure 7 (A)), 31 out of 55 comparisons showed statistical

significance. Of these, 24 were comparisons involving HeLa, A-

431 and U-2OS cells. Thus when these cells are subtracted (since

they are clearly different from the rest of the cell lines), the number

of presumed differences dropped from 31 to only 7. We believe

that this is an indication of the utility of the method: the full set of

features reflects a variety of differences among the cell lines in a

range of possible (latent) parameters not necessarily directly

relevant to microtubule distributions (such as cell size and shape

and nuclear size and shape). The model parameter estimation is,

on the other hand, able to ignore these, and focuses on

microtubules. In that case, eight of the cell lines appear to be

fairly similar. Consideration of all of Table 3, Figure 7 (A) and
Figure 6 suggests that HeLa, A-431 and U-2OS are very different

from those eight but A-431 and U-2OS are close to each other in

the estimated model parameter space. The differences among the

three groups can largely be accounted for by differences in total

polymerized tubulin from Figure 6. Similarly, among the group

of eight, we can observe that RT-4 appears to have fewer, longer

microtubules, Hep-G2 appears to have lower total tubulin, and

Hek-293 appears to have shorter microtubules.

Correlation between the estimated amount of

polymerized tubulin and total tubulin fluorescence. We

compared the amount of polymerized tubulin, estimated as the

product of the number and mean length of the microtubules, to

the total intensity of each cell image. The plot of these two

quantities for real cells from eleven cell lines is shown in Figure 8.

The high correlations demonstrate the consistency between the

estimated and real amount of polymerized tubulin and the

effectiveness of our methods.

Discussion

We have developed an automated method to estimate 3D

microtubule model parameters from 2D confocal immunofluores-

cence microscopy images in an indirect manner. The method is

dependent on the 3D structure of the cell and the nucleus, and the

centrosome location. We describe an automated approach in the

method to generate an approximate 3D cell and nuclear

morphology using only the 2D microtubule image and 2D nucleus

image acquired at the center (half height) of the cell. We applied

this method to generate distributions of microtubules in cells and

utilized an indirect feature matching algorithm to estimate model

parameters from 821 images of cells and 11 cell lines. Then the

two quantitative parameters, number of microtubules and mean

length of microtubules, were compared across cell lines. These two

parameters are important because they demonstrate the funda-

mental physical characteristics of microtubules in cells.

To our knowledge, this study is the first attempt to quantify the

number and mean of the length distribution of microtubules in

Table 2. Estimated accuracies of recovery of model parameters from synthetic 2D images in the simulation experiment.

Library Number of microtubules Mean of length distribution Collinearity

1 4.3269.95 5.52611.1 0.6160.82

2 4.89611.9 8.52624.2 0.5860.78

3 3.9669.53 6.24617.9 0.6860.86

4 4.10610.6 4.63610.6 0.5760.76

5 3.6268.55 5.08611.6 0.6160.86

Numbers shown for the parameters are MAPEs between the values used to synthesize an image in the validation bed and the estimated values obtained from matching
of that image in the testing libraries.
doi:10.1371/journal.pone.0050292.t002

Figure 4. Examples for estimating parameters values by
matching to simulated images. 2D real images are shown on the
left, and center slices of the best-matching 3D synthetic images are
shown on the right. (A) A-431 cell line, Number of microtubules = 250,
Mean of length distribution = 30 microns, Collinearity = 0.97000; (B) U-
2OS cell line, Number of microtubules = 250, Mean of length
distribution = 30 microns, Collinearity = 0.98466; (C) U-251MG cell line,
Number of microtubules = 250, Mean of length distribution = 20 mi-
crons, Collinearity = 0.99610.
doi:10.1371/journal.pone.0050292.g004

Comparison of Microtubule Distributions
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intact cells across different cell lines. Methods such as electron

microscopy can image intact cells, but have interference from

other cell components [11]. More invasive methods of preparation

such as extraction of the microtubule network can allow electron

microscopy to generate traceable images, but are no longer

representative of intact cells [12]. Fluorescence microscopy, on the

other hand, can be used to obtain information about proteins at

monomer-level resolution of localization without interference from

other cell components in intact cells with high-throughput data.

One reason for studying microtubule distributions across cell

lines is to begin to search for explanations of how expression of

microtubule-associated proteins (MAPs) may account for any

differences observed. The expression levels of many proteins vary

across cell lines [13], and there are cell-specific proteins that

Figure 5. Frequency distributions of all estimated parameters from real 2D images for all cell lines. There are two sets of three columns
for the model parameters (number of microtubules, mean of the length distribution and collinearity) in each row. The cell lines (from top to bottom)
are U-251MG, A-549, MCF-7, Hep-G2, A-431 and HeLa in the left column, and CaCo2, PC-3, RT-4, Hek-293, and U-20S in the right.
doi:10.1371/journal.pone.0050292.g005

Comparison of Microtubule Distributions
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Figure 6. Comparison of the bivariate distributions of the estimated model parameters of the eleven cell lines. The ellipses are
centered at the bivariate means of the two parameters and contain about 67% to 80% of the cells for a particular cell line (at most 1.5 standard
deviations from the means).
doi:10.1371/journal.pone.0050292.g006

Figure 7. Hierarchical clustering trees of eleven cell lines. The trees were built on the pairwise Hotelling’s T2 statistics from (A) the testing of
the bivariate distributions of the estimated number of microtubules and mean length and (B) from the testing of the bivariate distributions of the first
two principal components of the multivariate features computed from the real images.
doi:10.1371/journal.pone.0050292.g007

Comparison of Microtubule Distributions
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regulate microtubules [14,15]. In this paper, the cell lines chosen

are from varying lineages, such as mesenchymal, epithelial and

glial tumors, which may differ in their expression of MAPs. Our

analyses show that some cell lines do have significant differences in

the estimated parameters of the number and length distribution of

microtubules. In future work, we hope to establish whether and

how these differences results from variation in expression of

specific MAPS.

There is evidence that the number and length of microtubules

are correlated with the size of the cell [16,17]. We therefore

computed the area of the center slice (sum of pixels of the binary

image) as the value reflecting the size of cytosolic space of the cell,

Table 3. Statistical tests of the model parameters and the features between cell lines.

p-values U-251MG CaCo2 A-549 PC-3 MCF-7 RT-4 Hep-G2 Hek-293 A-431 U-2OS HeLa

U-251MG (94) NA 0* 0* 0* 0* 0* 6.1e-13* 1.1e-10* 5.8e-6* 9.8e-10* 0*

CaCo2(77) 1 NA 1 1 0.86 0.045* 6.3e-6* 5.5e-3* 0* 0* 0*

A-549(66) 0.077 1 NA 1 0.012* 0.32 0.12 1 0* 7.3e-12* 0*

PC-3(110) 1 1 1 NA 0.62 1 7.6e-4* 1 0* 0* 0*

MCF-7(54) 1 1 1 1 NA 4.9e-5* 9.2e-12* 3.1e-6* 0* 0* 0*

RT-4(38) 0.11 0.030* 5.4e-4* 0.067 1 NA 7.3e-5* 1 0* 0.029* 3.1e-5*

Hep-G2(51) 5.7e-4* 1 1 2.0e-3* 0.081 1.0e-4* NA 0.020* 0* 0* 0*

Hek-293(70) 4.3e-3* 0.92 1 0.26 0.12 2.0e-9* 1 NA 0* 4.1e-7* 0*

A-431(112) 1.5e-4* 8.7e-6* 2.7e-9* 0.012* 0.059 7.1e-3* 0* 0* NA 7.0e-6* 0*

U-2OS(114) 2.6e-7* 1.1e-5* 1.9e-4* 0.12 4.1e-3* 8.6e-6* 0* 2.9e-11* 1 NA 6.1e-13*

HeLa(35) 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* NA

The lower triangular part of the table is for the testing of equality of the bivariate mean of the distribution of two estimated microtubule parameters (number of
microtubules and mean of length) between cell lines using Hotelling’s T2 test. The upper part (Italic) is for testing of the equality of the bivariate mean of the distribution
of the first two principal components (learned from and representing the multivariate distribution of features on real cells). The rows and columns of the table are
sorted according to the tree from Figure 7 (A). The p-values are adjusted according to the family-wise Bonferroni correction for multiple testing. The ‘‘*’’ denotes cell
lines which differ at significance level alpha = 0.05. The number in the parenthesis of the first column is the number of cells from each cell line.
doi:10.1371/journal.pone.0050292.t003

Figure 8. Scatter plot of the estimated total amount of polymerized tubulin (the product of the estimate number of microtubules
and the mean length) versus the total tubulin fluorescence intensity of real images from eleven cell lines. The correlation coefficient for
each cell line is shown in the legend.
doi:10.1371/journal.pone.0050292.g008

Comparison of Microtubule Distributions
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for each of the cell lines. To quantify the correlation, we computed

the correlation coefficient between the estimated total polymerized

tubulin and the area of cytosolic space for each cell line. The plot

of these two quantities for all cells is shown in Figure 9. The

correlation coefficients varied from 0.46 to 0.81 which are

intermediate to high. They add more confidence to the estimates

of our automated approach and further confirm the existing

hypothesis using alternative approaches.

The methods described here have potential applications in a

range of experimental approaches. For example, microtubule

interacting drugs (mitotic inhibitors) are commonly used for cancer

chemotherapy, and our method could provide a quantitative

measure of the effects of these drugs on different cancer cell types.

It also could be used in high-content screening to distinguish

different types of effects of compounds that disrupt microtubule

dynamics.

Finally, we note that our estimation procedure is only

appropriate for images and cell lines for which the majority of

microtubules originate at the centrosome because we explicitly

modeled all microtubules as starting from it. Therefore, the

centrosomes may appear more focused in some synthetic images

compared to the corresponding experimental ones for cell types

that are less organized by centrosomes. Future work could include

modifications to our modeling procedure so that it can be used

with a more diverse set of experimental images and cell lines.

Materials and Methods

Data Acquisition
3D image data of HeLa cells. We used 3D images of HeLa

cells previously obtained by three color confocal immunofluores-

cence microscopy to visualize three cell components: the cell

membrane, nucleus and microtubules [18]. The original pixel size

was 0.05 microns, and the images were downsampled for

computational efficiency to 0.2 microns.

2D images of eleven cell lines. The data used here are

confocal immunofluorescence microscopy images of fixed and

interphase cells of eleven different cell lines: A-431, U-2OS, U-

251MG, RT-4, PC-3, Hep-G2, HeLa, CaCo2, A-549, Hek-293

and MCF-7 from the HPA. They are human cell lines widely used

in current research. The images were acquired as described

previously [1], and the cell lines were obtained from ATCC-LGC

Promochem (Boras, Sweden) except that the first two were

obtained as described previously [1]. The images are analyzed as

8-bit TIFF images, with two files each obtained using a different

emission wavelength of fluorescence from a single image field.

These two channel files show the cellular probes/organelles used

as references: (i) anti-tubulin antibody as internal control and

marker of microtubules and (ii) DAPI for the nucleus. Each of the

field images is of size 172861728 for the first three cell lines and

204862048 for the rest of eight, and the pixel size is 0.08 microns

in the sample plane. The field images were then also downsampled

for computational efficiency to 0.2 microns.

Computational Methods
Cell segmentation for cell size calculation and 3D

morphology generation. The field images were segmented

into single cell regions using a seeded watershed method on the

tubulin channel with the nuclei in the nuclear channel as seeds.

The 2D cell and nuclear boundaries were found by thresholding

the single cell regions and the nuclei respectively. These were used

Figure 9. Scatter plot of the estimated total amount of polymerized tubulin versus the area of cytosolic space (sum of pixels) for
real cells from eleven cell lines. The correlation coefficient for each cell line is shown in the legend.
doi:10.1371/journal.pone.0050292.g009

Comparison of Microtubule Distributions
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for cell size calculation and for 3D morphology generation (see

below).

Point Spread Function (PSF) estimation. The confocal

PSF was generated computationally based on a theoretical model

using the SVI PSF calculator for the Zeiss LSM 510 confocal

microscope for the first three cell lines and the Leica SP5 for the

other eight cell lines (http://www.svi.nl/NyquistCalculator). The

pinhole size was set to 1 Airy Unit for the Zeiss and 285.16 nm for

the Leica. The numerical aperture was 1.4 and the emission-

excitation data used to generate the PSF was for the Alexa555 dye

(http://probes.invitrogen.com/handbook/boxes/0442.html). The

PSF is used to convolve on the generated raw image of distribution

of microtubules to account for the digital blurring from

microscopy imaging.

Centrosome location detection. The 3D coordinate of the

centrosome was estimated by breaking the problem into two parts.

First, the XY-coordinate was estimated and then the Z-coordinate.

The XY-coordinate was chosen as the pixel with the maximum

intensity value in the vicinity of the nucleus after smoothing with

an averaging filter of size 25 pixels on the tubulin channel image

(as for cell image). For the Z-coordinate, we used linear regression

to estimate the location as a function of the following predictor

variables: (i) Maximum intensity of the microtubule image, (ii)

Mean intensity of the microtubule image, and (iii) pixel intensity of

the XY coordinate in the microtubule image. The coefficients of

the linear regression were estimated from the 3D HeLa images

where the 3D centrosome as described previously [8]. The

estimated centrosome is then used to act as an organizer for

microtubules and all generated microtubules start from it.

Estimation of single microtubule intensity. The single

microtubule intensity for each cell line was estimated using the

method described previously [9]. It is then used to scale the

intensity of synthetic image up to that of the real image.

3D cell and nuclear morphology generation. In order to

estimate the cell shape, we firstly required the following two

estimates: (1) the cell shape at the bottom, where the cell

membrane interacts with a substrate (e.g. petri-dish), and (2) cell

shape decay from the bottom of the cell to the top.

For estimating the bottom shape of the cell, we used the

microtubule channel image acquired at the center of the cell, i.e.

z = Z/2, where Z is the height of the cell in pixel dimensions. This

image contains information about the cell boundary at the bottom-

most region because the out-of-focus light from the bottom slice is

visible in the center slice (as microtubules being of relatively lower

intensity). Hence, the boundary of the bottom slice (bottom shape)

was found by thresholding for above zero intensity pixels. (see

Figure 3 (A) for an example). Next, we represented the cell shape

decay by estimating cell shape pixel area as a function of height of

the cell, i.e. A(z). This function was estimated from the average

area profile of the 2D slices in the 3D HeLa stack (data not shown)

to be A(z) = 22z*Area, where Area is the pixel area of the bottom

slice, and z is the distance from the bottom. Since the cell tapers

from the bottom shape to the top (because of the presence of a

nucleus), we modeled the 3D cell shape by interpolating from the

bottom shape of the cell to a smaller ellipse inside the cell whose

major axis was aligned with that of the cell. This interpolation was

done using distance transform based shape interpolation [19].

Given the height of the cell and the z-sampling step-size

(0.2 microns, 1 pixel volume per stack), we discretized this model

at varying z by choosing interpolated shapes that have areas that

match the estimated area profile A(z) from the 3D HeLa stack.

Figure 3 (C) shows an example of generated 3D cell shape

containing 8 stacks (height of 1.6 microns). The 3D nuclear

morphology was generated based on the same procedure above

using the nucleus channel image (Figure 3 (D)). Then

microtubules are generated conditioned on the approximate 3D

cell and nuclear shape.

Growth model of microtubule patterns. The growth

model of microtubule patterns (Figure 1) is similar to the one

described previously [8], with three modifications: (i) the Erlang

distribution was used for microtubule lengths since, unlike the

Gaussian distribution, it has only one free parameter; (ii) if the

microtubule is required to make a turn in 3D space such that the

3D angle is greater than 63.9 degrees with cosine value of 0.44 (this

value is chosen manually to account for appearance of real

microtubules as well as the generability of the model), the growth

procedure for it is terminated; and (iii) if within a consecutive 30

steps (about 6 microns) of growth of a microtubule, there are more

than 3 pairwise vector angles that are greater than 120 degrees, the

growth procedure for it is terminated. In order to ensure that the

input parameters are exactly the same as the output parameters,

we use the following algorithm to generate the images.

1.Input parameters: number of microtubules (n), mean of the

length distribution (mu), collinearity (a);

2.Sample n lengths from Erlang distribution;

3.Sort lengths from longest to shortest;

4. Iterate until all lengths are generated, starting with the longest

microtubule:

for i = 1 to n do

if storage has microtubule of desired length generated then

use the generated microtubule length;

remove chosen microtubule from storage;

continue, to the next microtubule.

end if

loop

Generate a microtubule using the method in Figure 1.

if the desired microtubule length cannot be generated then

add to storage and re-generate the microtubule.

if repeating 100 times still does not generate a

microtubule of desired length then

return declare ‘‘input parameters cannot be

generated’’.

end if

end if

end loop

end for

Finally the generated image was convolved with the estimated

PSF and was then multiplied with the corresponding estimated

single microtubule intensity to make the intensity comparable to

real images.

Library generation. As described previously [8], a library of

synthetic images was generated for each cell geometry (cell shape

and nucleus shape) and contained all combinations of the

parameter values below (resulting in a total of 810 synthetic

images). The values were chosen by experience to account for the

appearance of real microtubules as well as the generability and

computational efficiency of the model):

N Number of microtubules = 5, 50, 100, 150, 200, 250, 300, 350,

400, 450;

N Mean of length distribution = 5, 10, 15, 20, 25, 30, 35, 40,

45 microns;

N Collinearity (cosa) = 0.97000, 0.98466, 0.99610;

N Cell Height = 1.2, 1.4, 1.6 microns.
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Features and matching. For each 2D real cell image and all

the central 2D slices from its 3D simulated images in the library,

2D versions of the features that were used previously [8] were

calculated. Detailed information about the implementations of the

2D version of the features have been presented [20]. In addition,

we appended the feature set with edge features, which were some

histogram features calculated on the gradient magnitude and

gradient’s direction after convolving each 2D image with Prewitt

operator. Following the feature computation, we calculated the

normalized Euclidean distances between the feature vector of the

real image and those of its simulated images for matching. The set

of parameters that was used to generate the simulated image with

the minimum distance was used as estimates of the parameters of

distribution of microtubules in that real image [8].
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