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Abstract
The long-term goal of connecting scales in biological simulation can be facilitated by scale-

agnostic methods. We demonstrate that the weighted ensemble (WE) strategy, initially

developed for molecular simulations, applies effectively to spatially resolved cell-scale sim-

ulations. TheWE approach runs an ensemble of parallel trajectories with assigned weights

and uses a statistical resampling strategy of replicating and pruning trajectories to focus

computational effort on difficult-to-sample regions. The method can also generate unbiased

estimates of non-equilibrium and equilibrium observables, sometimes with significantly less

aggregate computing time than would be possible using standard parallelization. Here, we

use WE to orchestrate particle-based kinetic Monte Carlo simulations, which include spatial

geometry (e.g., of organelles, plasma membrane) and biochemical interactions among

mobile molecular species. We study a series of models exhibiting spatial, temporal and bio-

chemical complexity and show that althoughWE has important limitations, it can achieve

performance significantly exceeding standard parallel simulation—by orders of magnitude

for some observables.

Author Summary

Stochastic simulations (simulations where randomness plays a role) of even simple biolog-
ical systems are often so computationally intensive that it is impossible, in practice, to sim-
ulate them exhaustively and gather good statistics about the likelihood of different
outcomes. The difficulty is compounded for the observation of rare events in these simula-
tions; unfortunately, rare events, such as state transitions and barrier crossings, are often
those of particular interest. Using the weighted ensemble (WE) method, we are able to
enhance the characterization of rare events in cell biology simulations, but in such a way
that the statistics for these events remain unbiased. The histogram of outcomes that WE
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produces has the same shape as a naive one, but the resolution of events in the tails of the
histogram is greatly improved. This improved resolution in rare event statistics can be
used to infer unbiased estimates of long timescale dynamics from short simulations, and
we show that using a weighted ensemble can result in a reduction in total simulation time
needed to sample certain events of interest in spatial, stochastic models of biological
systems.

This is a PLOS Computational Biology Methods paper.

Introduction
Stochastic effects are of crucial importance in many biological processes, from protein dynam-
ics [1], to gene expression [2], to phenotypic heterogeneity [3]. Unfortunately, due to the high
computational cost of simulating complex stochastic biological systems, the effects of stochasti-
city on system response remain under-studied in realistic biological models.

From molecular to cellular scales, simulations of biological systems push the limits of our
computational resources [4, 5]. Compromising between sampling power and model complex-
ity will be a trade-off for the foreseeable future; for example, at atomistic resolution even the
most powerful, specially designed supercomputers can simulate only modestly sized proteins at
timescales that approach sufficiency for adequate sampling [6]. Similarly, models of cellular
processes, though they omit entirely molecular-level details, are also constrained in complexity
and realism by the need to perform adequate amounts of simulation in order to gather useful
statistics [7]. Mixing scales in a simulation, though perhaps necessary for capturing the cou-
pling across multi-scale networks, only makes this problem worse.

Enhanced sampling algorithms offer an attractive proposition: instead of compromising on
model complexity in order to achieve well-sampled results, rather use simulation resources
more effectively and extract more information given the same resources. Not surprisingly,
there has been significant interest in sampling algorithms in the field of atomistic protein simu-
lation, including umbrella and histogram sampling [8–10], path sampling methods, [11–17],
and various flavors of replica exchange [18–21]. Arguably, such approaches have transformed
the field of molecular simulation [6, 22, 23].

The essence of the present study is the extension of one successful enhanced sampling strat-
egy for molecular simulation to spatially resolved cell-scale systems. Specifically, the weighted
ensemble approach is a scale-agnostic method that is able to facilitate the enhanced sampling
of a wide spectrum of stochastic simulations and non-Markovian processes [17], including
Brownian dynamics [13], molecular dynamics [24], Monte-Carlo simulations of atomistic and
coarse-grained protein dynamics [25, 26], chemical reaction networks [27], and as we demon-
strate here, the spatially resolved stochastic reaction-diffusion processes used to simulate cellu-
lar processes. Weighted ensemble achieves its enhanced sampling by dividing up a model’s
state-space into bins and maintaining an ensemble of trajectories with different weights that
evenly sample these bins. This weighted ensemble is created by resampling the distribution of
trajectories at fixed time intervals, spawning new simulations from trajectories that have wan-
dered into unexplored regions and pruning them away if a region is overpopulated, in order to
maintain even coverage of the space. This resampling process is exact, in the sense that it
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induces no bias in the estimates of equilibrium and non-equilibrium observables [17, 28].
Resampling at fixed time intervals lends the method some key benefits: it is trivially paralleliz-
able, since trajectories run independently aside from interacting infrequently during resam-
pling, and it is modular, needing no “under the hood” interaction with the underlying
dynamics, rather requiring only intermittent reports of a progress coordinate.

Spatial heterogeneity can be crucial to accurately capturing the behavior of cell-scale biolog-
ical systems, for instance in models of neuromuscular junction dynamics studied below [29].
Although simple models of biological signaling, where the molecules of interest are spatially
homogeneous, or “well-mixed” are very common [30, 31], the assumption of spatial homoge-
neity may not always be justified; certain biological systems, while suitable for ignoring molec-
ular structure, are not amenable to being modeled as spatially homogenous. Indeed, high
resolution microscopy images of single cells show distinct patterns of localization for a wide
variety of biomolecules [32–34], leading one to speculate if the well-mixed regime is the excep-
tion rather than the rule.

Here, we apply the weighted ensemble sampling procedure to decrease the cost of simulat-
ing spatial stochastic systems. After introducing our methodology, we present results for a toy
diffusive binding system and two more complex systems: a cross-compartmental signal trans-
duction model in a realistic cellular geometry and a model of an active zone in a frog neuro-
muscular junction. The flexibility and power of the WE method make it ideally suited for
enhancing the sampling of these three diverse models.

Methods
We employ the weighted ensemble sampling algorithm to manage multiple instances of parti-
cle-based kinetic Monte Carlo simulations of a given spatially resolved model of cellular signal-
ing. We make use of a variety of software packages in our work, all of which are freely available
via MMBioS.org.

Weighted Ensemble
Basic weighted ensemble. The weighted ensemble sampling strategy achieves enhanced

sampling by maintaining an ensemble of simulations running in parallel, distributed evenly
across the configuration or state space of a system. To do this, the configuration space of the
system is typically divided into different region, or “bins”, according to the values of some
progress coordinate(s). The parallel ensemble of simulations is periodically paused, and each
simulation is inspected to ascertain which bin it inhabits. Simulations in overpopulated bins
are pruned away until a desired population is reached, and simulations in underpopulated bins
are duplicated until a sufficient population is reached. After this brief resampling process, the
ensemble of trajectories is restarted, and the native dynamics of the system continues, until it
comes time to pause and resample again. By assigning each trajectory a statistical weight and
conserving this weight during pruning and cloning operations, the ensemble remains unbiased,
while efficiently sampling otherwise difficult to reach regions of configurations space [13].

The essence of the weighted ensemble sampling procedure is encapsulated in Fig 1, where
we have chosen to divide the example system along one coordinate into three bins, and have a
target number of two trajectories in each bin. Before the simulation begins, the configuration
space of the system must be considered, and typically a progress coordinate (or more than one)
along which a trajectory can be tracked is selected. Although automated binning procedures
have been developed [17, 35], we do not use them in the studies reported here. The configura-
tion space of the system is divided into non-overlapping bins of the selected progress coordi-
nate(s) that completely cover the configuration space. This division is usually done ahead of

Rare Event Sampling in Spatial Stochastic Systems Biology Models

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004611 February 4, 2016 3 / 25



time, but “on the fly”modifications are also permitted [17]. In Fig 1, a one-dimensional projec-
tion of a system is shown, and the space is divided into three bins, which remain the same
throughout the simulation. For efficient sampling, the progress coordinates chosen should be
associated with a set of slowly varying and uncorrelated processes; additional progress coordi-
nates tend to increase computing cost without a sufficient “payoff” in sampling. Additional
slowly varying progress coordinates can speed up sampling of slow/rare processes in the sys-
tem, but choosing progress coordinates that are uncorrelated is also important, because corre-
lated coordinates are redundant in the variation of the system that they capture. The expense
of maintaining bins full of trajectories increases drastically with the number of progress coordi-
nates used, making it essential to use additional progress coordinates only when they are cru-
cial to capturing new information about the system.

In the basic weighted ensemble procedure, a number of replicate trajectories are initiated
from a chosen initial state, with weights summing to one, and are simulated for a short time τ.
After that short time, the simulations are paused and inspected for progress along the chosen
progress coordinates. If a trajectory has wandered into a new, previously unpopulated bin, that
trajectory is replicated, and the statistical weight of that trajectory is divided among these
“daughter” trajectories. If a bin becomes over-populated, trajectories are pruned and their
weights are reassigned. After this pause in dynamics for resampling, the trajectories are
restarted, and the entire process is iterated as desired.

The resampling strategy of WE is exact for arbitrary types of stochastic dynamics in any
number of dimensions [17, 28]. Typically, when we divide the configuration space of the

Fig 1. Weighted ensemble algorithm.One initial trajectory is iteratively resampled until its progeny trajectories are distributed equally around the state-
space, according to user-defined bins. Excess trajectories are pruned if necessary. This process is statistically exact if the probabilistic weight of each
trajectory is properly accounted for in the resampling (splitting/merging) process. In between splitting and merging events, each trajectory follows the natural
dynamics of the system, and splitting events occur when a trajectory naturally wanders into an underpopulated region of space. Reprinted with permission
from Efficient stochastic simulation of chemical kinetics networks using a weighted ensemble of trajectories, The Journal of Chemical Physics 139: 115105.

doi:10.1371/journal.pcbi.1004611.g001
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system into bins, we set a target number of trajectories for each bin; if, during one of the inter-
mittent resampling events, the number of trajectories in that bin is greater or less than the tar-
get (but nonzero), we either up- or down-sample the trajectories in the bin to reach the target
number, always accounting for the statistical weights of each trajectory. “Up-sampling” con-
notes spawning new trajectories, identical to the original but with the original trajectory’s sta-
tistical weight now split between the new and old trajectories. For instance, during the t = τ
resampling event in Fig 1, the trajectory in bin 2, initially possessing a weight of 1/2, spawns an
identical copy of itself, and the weight of the original trajectory is evenly divided so that the two
resultant trajectories each have a weight of 1/4. “Down-sampling” is a pruning process,
whereby trajectories are compared in a pairwise fashion and one is deleted based on a random
process, with a likelihood of survival proportional to the statistical weight of the trajectory. For
instance, during the t = 2τ resampling event in Fig 1, the three trajectories in bin 1 all have
weight 1/4, so two of them are selected, and a random number draw (evenly weighted, since
both trajectories have the same weight) decides which one remains. By these two simple pro-
cesses, an ensemble of trajectories is created that evenly samples the state space of the system
without bias [17].

The resampling process adds a small amount of computational overhead to the overall cost
of sampling. This expense, however, is a small fraction of the total cost, provided that either the
dynamics of the system are expensive to simulate, or the resampling interval is long compared
to the timescale of the internal dynamics of the simulation, which we find is almost always the
case in systems of interest. For instance, when using weighted ensemble to run simulations of
molecular dynamics [24], large chemical kinetics networks [27], or the spatially resolved sto-
chastic chemical kinetics studied here, the trajectories will typically run for a wall-clock time
on the order of minutes or hours before being paused for resampling, while the resampling
operation itself takes on the order of seconds. Indeed, the resampling arithmetic itself is trivial
in complexity compared to the stochastic dynamics of the trajectories themselves, and most of
the time spent during resampling is actually spent reading and writing to disk and starting and
stopping trajectories (if the data are too large to store in memory). Like any enhanced sampling
method, WE is worthwhile only for complex models exhibiting a wide variety of timescales.

The benefit of this resampling process is that it facilitates the efficient, exact sampling of the
system along the binned progress coordinates. As illustrated schematically in Fig 2, in a naive
“brute-force” approach, where a number of independent trajectories are simulated and then
compiled into a histograms of outcomes, the sampling power of the ensemble is concentrated
about the peak of the distribution.

By definition, the peak contains the most probable events. Thus, certain parts of the config-
uration space are destined to be poorly sampled; if the true probability of a state being occupied
is less than the inverse of the number of trajectories simulated, it is unlikely to be sampled even
once. On the other hand, weighted ensemble decouples the number of trajectories in a region
of configuration space from the probability of a trajectory to be there, and allows for a more
even coverage of all regions of the underlying distribution. It should be noted that an even cov-
erage of configuration space lends itself to efficient sampling only if the coordinate(s) along
which this coverage is distributed are useful in characterizing the observables of interest [17].
That is, the payoff of using weighted ensemble sampling depends on one’s choice of progress
coordinate and bins, and efficiently sampling certain regions of configuration space may prove
unrewarding.

Calculation of mean first passage time with WE. The efficient sampling of low-probabil-
ity regions of the (time-dependent) probability distribution of a stochastic system can be lever-
aged to extract unbiased estimates of long-timescale information about the system. Specifically,
the Hill relation [36] provides a link between the mean first passage time (MFPT) between two
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states A and B, and the steady-state flux of probability (flow per unit time) between them:

MFPT ðA ! BÞ ¼ 1

Flux ðA ! BÞ ; ð1Þ

where Flux(A! B) here refers to the probability (per unit time) that a trajectory, which at
some point in the past originated in A, arrives at B for the first time. This relationship is exact
(up to statistical noise) when the system exhibits a steady-state flow of probability from A to B.
These two states A and B can be single micro-states, or large states composed of many smaller
sub-states (e.g. weighted ensemble bins); they can also be arbitrarily defined independent of the
WE bin boundaries.

A steady-state is achieved when the probability distribution of the system is constant in time.
That is, for each sub-state i in the system, in a given time period the total flow of probability into i
from the other sub-states is equal to the flow of probability out of i into other sub-states. In terms
of the steady-state probabilities pi of each sub-state, and the transition probabilities kij between
sub-states (in an arbitrary, but fixed, time interval), the steady-state condition is given by

8i :
X

j

kjipj ¼
X

j

kijpi : ð2Þ

The conditional probabilities kij can be estimated fromWE, and the pi values can then be
inferred by solving the linear system in Eq 2. The Flux(A! B) needed for the MFPT in Eq 1 is
obtained by summing over all steady-state probability flow into B:

Flux ðA ! BÞ ¼
X

i=2B

X

j2B
pikij ; ð3Þ

where the kij and pi values are obtained solely from trajectories originating in A[28].
To accommodate a steady state, the boundary conditions of the weighted ensemble simula-

tion described above must be slightly adjusted to induce a steady-state flow of probability from
the initial state to the target state. This is accomplished by removing a trajectory from the

Fig 2. Distribution of sampling power. Brute-force sampling, by definition, concentrates sampling power on
the most probable events. By contrast, weighted ensemble samples a distribution more evenly, and
compared to brute-force it applies more resources to hard-to-sample regions of interest.

doi:10.1371/journal.pcbi.1004611.g002
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ensemble whenever it enters the target state, and re-starting a new trajectory from the initial
state with the same probabilistic weight as the one just removed. After a sufficient amount of
time the system will relax into a steady flow of probability from one state to another, with prob-
abilities in each bin maintained at a steady value. After this “burn-in” period, the Hill relation
can be employed to estimate the MFPT.

Although not used in this report, we note that since the transition rates between bins can
often be estimated accurately even before the probability distribution has relaxed to a steady
state, a Markov-like transition matrix can be constructed and solved to infer long-timescale
properties of the system, including the mean first passage time [28]. This approach is more effi-
cient than waiting for the system to relax into a steady state when the probability mass itself is
slow to relax, so long as there are sufficient transitions between bins, and the degrees of free-
dom orthogonal to the bins are either well-sampled or unimportant.

WESTPA implementation of WE. Throughout this work, we use the WESTPA [37]
implementation of the weighted ensemble algorithm, which is freely available and open source
(github.com/WESTPA). This implementation is flexible and adaptable for use with any sto-
chastic dynamics engine, and supports plugins for extended methods such as the steady-state
approach noted above. Interfaces currently exist for use with Gromacs, NAMD, AMBER, Bio-
NetGen, and the present work provides one for MCell [37].

In order to simplify the process of using weighted ensemble sampling techniques with sys-
tems biology models, we have constructed an automated service to convert MCell models into
ready-to-go WESTPA simulations, available at weightedensemblizer.csb.pitt.edu).

Comparing the efficiency of weighted ensemble and brute-force. There are different
ways to characterize the gain in efficiency from using weighted ensemble instead of brute-force
sampling. We find that a useful approach to evaluating efficiency, which is independent of spe-
cific computational architecture, is to take the sum of the simulated dynamics time in the
weighted ensemble approach, and compare those results to simulating the same amount of
dynamics in brute-force simulations. For instance, the single weighted ensemble run for the toy
diffusive binding model presented in the Results section spawned a total of 610,704 trajectory
segments in its 1000 iterations; as such, it is equivalent to simulating 610,704/1000 = 610.704
brute-force trajectories. Thus, always rounding up to give brute-force the benefit, we compare
the weighted ensemble results to the results of running 611 brute-force simulations. The statisti-
cal precision exhibited by each method can then be compared on the basis of equal time spent
simulating dynamics. As mentioned above, the overhead imposed by weighted ensemble resam-
pling is very small compared to the time spent simulating dynamics for most systems of interest,
so for models of even moderate complexity, we find this to be a fair comparison of efficiency.

Because WE trajectories, and hence observables, exhibit correlation within a single simula-
tion, it can be important to perform multiple, independent weighted ensemble runs to ensure
uncorrelated estimates of observables. When comparing the performance of brute-force sam-
pling to multiple independent weighted ensemble runs, for each WE run we construct a brute-
force ensemble of equivalent cost to each independent WE run, as described above. We can
then compare the results of the multiple brute-force ensembles to the multiple independent
WE runs on equal footing.

Kinetic Monte Carlo for spatial behavior of biochemically active species:
MCell
All simulations in this report employ spatially resolved particle-based kinetic Monte Carlo
dynamics, implemented in the MCell software package. MCell (Monte Carlo Cell) is an open
source program (MCell.org) that uses spatially realistic 3D cellular models and specialized Monte
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Carlo algorithms to simulate the movements and reactions of molecules within and between cells,
or what is referred to as “cellular microphysiology” [38]. MCell has been used to study a wide
range of neuroscience questions such as neurotransmitter diffusion in the brain [39], the structure
and function of synapses in the central [40] and peripheral [29] nervous system, and the effect of
drugs on nervous system function [41]. MCell has also been employed to investigate general cellu-
lar phenomena such as calcium signaling [42] and the role of diffusion in cellular transport [43].

MCell combines rigorously validated and highly optimized stochastic Monte Carlo algo-
rithms, particle-based random walk diffusion of (point particle) molecules in space and on sur-
faces, and stochastic biochemical state transitions. MCell models can contain arbitrarily
complex 3D mesh geometries representing the biological system under consideration. These
geometries are typically derived from reconstructions of biological tissue (typically from elec-
tron microscopy data) [44], or created in silico based on average geometries [29], e.g. via Cell-
Blender software (github.com/mcellteam/cellblender) [45]. MCell features a flexible model
description language and has the ability to checkpoint simulation trajectories at arbitrary out-
put intervals or times.

MCell is a kineticMonte Carlo scheme, in the sense that the time evolution of the system is
explicitly modeled. The Monte Carlo moves that the system makes are not arbitrary trial
moves, but are rather chosen according to the reaction and diffusion rates of the molecules
being simulated. A constant time-step is employed in these simulations, during which the like-
lihood of reaction and diffusion processes are computed and stochastically sampled; by using
appropriate time-steps, the dynamics of the underlying processes are faithfully recapitulated
(for further details, see [38, 46, 47]).

Complex model construction: CellOrganizer and BioNetGen
The construction of large, complex spatial models is facilitated by a combination of software
that specializes in separate aspects of this task.

One of the limiting factors in performing spatially realistic cell simulations is the difficulty
of obtaining cell geometries. This limitation can be addressed by learning generative models of
cell organization directly from microscope images; these can be used to synthesize an unlimited
number of realistic geometries. For instance, in the complex model in a realistic cellular geome-
try studied below, biochemical reaction networks, with corresponding compartments for
organelles, are constructed using BioNetGen software [48, 49], combined with cell geometry
models generated by CellOrganizer software [50–58] using CellBlender [45] to create the
MCell spatial simulations [59]. More information about this process of generating cellular
instances with realistic cellular and subcellular organizations/morphologies is given below. The
WESTPA software in turn manages ensembles of the MCell simulations, for either weighted
ensemble or brute-force sampling.

CellOrganizer (CellOrganizer.org) is an open source tool for learning conditional generative
models of cellular organization from images [50–58]. From these models, new cellular geome-
tries can be generated from different parts of the “shape space” of the system. Currently CellOr-
ganizer supports models for cell shape, nuclear shape, vesicle frequency, location and size, and
microtubule length, number and distribution. Important for this work is CellOrganizer’s ability
to produce realistic geometric instances of cells and subcellular components for use in modeling
using the experimental spatial extension of the Systems Biology Markup Language (SBML) [60].

Biochemical reaction networks in our model of signaling in a realistic cellular geometry are
built with the BioNetGen software package (BioNetGen.org), which is a framework for specify-
ing and simulating rule-based models of biochemical kinetics [48]. The rule-based approach
allows combinatorially large chemical reaction networks to be compactly described using a
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small set of rules that define the underlying molecular interactions [49]. Indirect simulation of
rule-based models requires automated generation of the reaction network implied by the rule
set. The generated reaction network can then be simulated using a variety of approaches
including ordinary differential equations and stochastic simulation. BioNetGen has previously
been used to model a wide range of processes including signal transduction, metabolic path-
ways, and genetic regulatory networks [49]. BioNetGen enables the cellular topology to be
defined via compartments [61], but it does not provide for the specification of more detailed
geometric information about these compartments or molecule locations. An automated pro-
cess converts these rules to an exhaustive network of chemical reactions representing the chem-
ical kinetics of the system (see Fig 3).

The reaction network from BioNetGen is fed into CellOrganizer to obtain an appropriate
cellular geometry, and the network and geometry are combined using the CellBlender package.
In CellBlender, the reactions and geometry are merged, and exported to MCell. The system is
then simulated as usual in MCell, either using weighted ensemble to manage the trajectories, or
via brute-force.

Models
We investigate three spatial models of cellular function: (1) a toy model of diffusive binding,
(2) an idealized model of cellular signaling, and (3) a realistic model of a neuromuscular junc-
tion. All three particle-based kinetic Monte Carlo models are simulated in MCell (version
3.2.1), and are available in the supporting information.

Toy diffusive binding model
A highly simplified model of diffusive binding was constructed as an initial test of the utility of
weighted ensemble sampling in a spatial system. The model geometry is depicted in Fig 4.

Fig 3. Software pipeline for realistic cell geometry simulations.Geometries are learned from images by CellOrganizer. Chemical reaction networks are
generated from rule-based models in BioNetGen. Geometries and reaction networks are imported to MCell via the CellBlender visual editor. The spatial
stochastic model is then simulated in MCell, with WESTPAmanaging a weighted ensemble of MCell trajectories.

doi:10.1371/journal.pcbi.1004611.g003
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In this toy model of diffusive binding, we define a cubical volume, of side length 2 microns,
on the top of which 1000 ligands are initially bound to 1000 receptors at time t = 0. The volume
also contains 1000 receptors at the bottom of the cube that are initially unbound. The ligands
are then free to unbind (with a constant of 103/sec), diffuse around the volume (with a diffusion
constant of 10−6cm2/sec), and re-bind to receptors at the top, or to receptors at the bottom
(with a constant of 108/M/sec). We examine the probability density for the number of receptors
at the bottom of the volume bound by ligands after simulating 10 milliseconds of dynamics.

WE simulation parameters. The toy model has an internal time step of 10 microseconds,
and we perform weighted ensemble resampling at an interval that exactly coincides with the
internal time step, or every 10 microseconds. We simulate the model for 10 milliseconds, or
1000 weighted ensemble iterations. The progress coordinate we use is the number of receptors
bound at the bottom of the cube, with bins on this coordinate at integers on [0, 1000], and we
simulate 16 trajectory segments in each bin.

Fig 4. Toymodel geometry. This toy system has receptors at the top and bottom of a cubical “cell”. The
receptors at the top are initially bound by ligands, that are free to unbind and diffuse around the cell, and bind
to receptors at the bottom.

doi:10.1371/journal.pcbi.1004611.g004
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Complex model in realistic cellular geometry
There is significant interest in the variation of cellular morphology and its association with cell
fate/function [59, 62–66], and here we employ a model that is a prototype for computationally
investigating the effect of a specific geometry upon biological function. The system models pro-
tein production in response to an extracellular signal and highlights interesting aspects of sig-
nal transduction through different subcellular components, such as transport across
membranes and feedback between molecules in different subcellular locations [59]. The model
contains on the order of 105 reactive molecules, situated in a realistic cellular geometry. Because
creating robust, high-quality complex models of cells is itself a challenging endeavor, we
employ the model generation pipeline through BioNetGen and CellOrganizer described in the
Methods section and Sullivan et al. [59].

We use the geometry shown in Fig 5, which is derived from three-dimensional images of
HeLa cells using CellOrganizer. This geometry contains topologically distinct partitions: the
extracellular region, the cytoplasm, the nucleus, and approximately 500 endosomes. The geom-
etry also includes the membranes that partition these compartments, through which molecules
must be transported when appropriate. Further details are included in the Supporting
Information.

We use the reaction schema illustrated in Fig 6 to describe the reaction kinetics of the
model. The BioNetGen rules for this model are included in the Supporting Information, and
they produce a network of 354 chemical reactions between 78 species [61]. Briefly, the signaling
network functions as follows. The system is initialized in a state of unbound receptors, and free
extracellular ligands. The extracellular ligand binds to receptors on the cell membrane, facilitat-
ing receptor dimerization, which can be internalized to the endosomes. In the endosomes,
receptor dimers can become phosphorylated and recruit a transcription factor, which upon
phosphorylation can also dimerize and migrate to the nucleus. In the nucleus, the transcription
factor initiates the transcription of mRNA1, which, when it migrates to the cytoplasm, pro-
duces protein P1. P1 can then migrate to the nucleus and act as a transcription factor for
mRNA2, which, when it migrates to the cytoplasm, produces the final species in the cascade,
protein P2. Although this reaction network is idealized, it embodies key aspects of the complex-
ity expected in real signaling processes.

Fig 5. Cellular geometry. Realistic cell geometry generated frommicroscopy images by CellOrganizer. The geometry explicitly models the
compartmentalization of the cell, by forcing molecules to diffuse through membranes to transition from, for example, the cytoplasm (grey) to the nucleus
(blue). Also modeled are endosomes (green), and the extracellular environment (transparent).

doi:10.1371/journal.pcbi.1004611.g005
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WE simulation parameters. The weighted ensemble simulation of the spatial signaling
model has an internal time step 100 microseconds, and we perform weighted ensemble resam-
pling once every second, i.e. every 104 internal time steps. We simulate the model for 500 sec-
onds, or 5 million internal MCell time steps, i.e. 500 weighted ensemble iterations. We use a
single progress coordinate for this system, the total number of P2 molecules in the system. The
bins on this coordinate are integers on [0, 25] and one bin from 25 to infinity. We simulate 48
trajectories in the bin containing 0, and 16 trajectory segments in each other bin. Note that
many coordinates (e.g., P1, ligands, mRNA1 and mRNA2, etc) are not divided into bins, as is
typical of WE simulations of complex systems.

Neuromuscular junction
The third model we study represents a single active zone of a frog neuromuscular junction
(NMJ). Synapses are of crucial physiological importance in neural function, yet their detailed

Fig 6. Signal transduction network. This rule-based model is translated into a system of chemical kinetics reactions by BioNetGen, and then simulated in a
spatially realistic geometry by MCell. Figure adapted from [61]. Rate constants and further details are given in the SI.

doi:10.1371/journal.pcbi.1004611.g006
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molecular behavior, particularly the way in which calcium triggers synaptic vesicle fusion still
lacks a complete, molecular level, characterization. This is mainly due to the lack of experimen-
tal approaches that can probe synapses at the required spatial and temporal resolution.
Computational models can provide critical microscopic insight into how calcium binding trig-
gers vesicle fusion and release [29].

The geometry of the frog NMJ active zone model is detailed in Fig 7 and has been described
previously [29]. The active zone model consists of a double row of 26 synaptic vesicles and two
rows of 26 voltage gated calcium channels (VGCCs) in the space between vesicles (see Fig 7).
Thus each synaptic vesicle is associated with a single VGCC.

The system is initialized from a state of no free calcium in the active zone. During a simula-
tion, VGCCs open stochastically, driven by a time-dependent action potential waveform [29].
Once open, VGCCs conduct calcium ions into the presynaptic space. Calcium ions can then
freely diffuse and either bind to*106 static buffer molecules or one of eight calcium sensor
proteins (synaptotagmin) on the synaptic vesicles. Since each synaptotagmin protein has five
calcium binding sites, each synaptic vesicle contains a total of 40 calcium binding sites. A
synaptotagmin protein is activated after binding at least two calcium ions, and vesicle fusion is
triggered once three out of its eight synaptotagmin proteins have been activated. For each sim-
ulation we track the calcium binding events to synaptotagmin sites on synaptic vesicles and
can thus determine the number of released vesicles and the time of release.

The NMJ model differs crucially from the two other systems studied here in that it possesses
rate “constants” that vary in time. Specifically, the rates for the opening of and calcium conduc-
tion through VGCCs in the model are time dependent and are parameterized according to an
experimentally measured action potential waveform. This time-dependent nature of vesicle
release in synapses is critical for their physiological function [29]. Thus, the model, with its
time-varying kinetics, cannot be treated using steady-state or equilibrium approaches and is
only usefully simulated, even with a weighted ensemble, out of equilibrium and for a predeter-
mined period of time.

WE simulation parameters. Weighted ensemble simulation of the NMJ model used an
internal time step of 10 nanoseconds, and we performed weighted ensemble resampling at an
interval of 6 microseconds for the low calcium conditions. In total, we simulate the model for 3
ms, i.e. 500 weighted ensemble iterations.

Fig 7. Schematic of the model of an active zone of a frog neuromuscular junction.On the left is an example snapshot from a simulation, and on the right
is a zoomed-in view of the model. Calcium is released into the presynaptic space and is free to diffuse around the geometry and bind to the synaptic vesicles
at the bottom of the active zone.

doi:10.1371/journal.pcbi.1004611.g007
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The progress-coordinate space for the NMJ system was two dimensional: one dimension
was the total number of calcium ions bound to all synaptotagmin molecules on a vesicle, and
the other was the number of activated synaptotagmin molecules on that vesicle. Since a vesicle
fuses once three synaptotagmin molecules are active, the latter coordinate had integer bins
from zero to three. For the coordinate tracking the number of bound calcium ions per synapto-
tagmin, the bins were integers on the interval [0, 20], and one bin from 20 to 40.

The NMJ progress coordinate was chosen to facilitate the observation of fusion events, in a
manner that is somewhat complicated but also serves to illustrate the flexibility in the type of
progress coordinates that WE accepts. Of the 26 vesicles in the simulation, the one that was
closest to fusion was chosen at every WE iteration. That is, the vesicles were sorted in descend-
ing order by number of activated synaptotagmin proteins, and then by number of total calcium
ions bound; the vesicle at the top of the list was chosen. This ranking was performed at every
weighted ensemble resampling event, so in principle the vesicle in question could change dur-
ing the simulation, but always in favor of progress towards a fusion event.

Due to the time dependent VGCC rate constants in the NMJ model, even weighted ensem-
ble sampling can have difficulty efficiently filling up bins of state space. This is because some
regions that are initially difficult to sample become easy to reach, and time spent populating
intermediate bins is in some sense ill-spent—the model is still sampled, but the efficiency can
be less than ideal if one attempts to always have all bins full of trajectories. To address this
issue, instead of performing a single weighted ensemble run with a large number of trajectories,
we perform many, less intensive weighted ensemble runs with fewer trajectories and average
the results. Specifically, for the low calcium regimes of 0.5 and 0.3 mM in the Results Section
for the NMJ model, we performed 100 independent weighted ensemble runs for each system.
The 0.5 mM system maintained a target of 8 trajectory segments per bin, while the 0.3 mM sys-
tem maintained a target of 16 trajectory segments per bin. As noted above, multiple indepen-
dent weighted ensemble runs facilitate error estimation.

Results
We sampled the three spatially resolved cell-scale models of varying complexity using the
weighted ensemble approach. The results from all three models demonstrate the ability of WE
to sample rare events in models of varying spatial and biochemical complexity. The application
of WE sampling to the NMJ model generated novel data about vesicle release in regimes of cal-
cium concentration too difficult to sample well with conventional methods.

Toy diffusive binding model
Our studies of rare event sampling in spatial stochastic systems start with the toy model shown
in Fig 4 and described in detail in the Models section. Briefly, we simulate diffusing ligands
unbinding from the top of a cubical volume and binding to the bottom for a short amount of
time. In this time-span, it is rare for a large number of the ligands to bind at the bottom of the
volume. Indeed, when we simulate the system 611 times via brute-force, we see that in most
cases only about 10–20 receptors are bound at the bottom after 10 milliseconds. We simulated
611 brute-force trajectories in order to make a fair comparison of weighted ensemble sampling
to a brute-force approach; the single weighted ensemble simulation we performed required
computational resources equivalent to 610.7 brute-force simulations. Looking more closely at
Fig 8 (see inset), we see that it will be impossible to adequately characterize events rarer than 1/
611 via the brute-force ensemble of simulations, since the rarest event one can see with brute-
force is equal to the inverse of the number of trajectories. On the other hand, the weighted
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ensemble approach is able to sample the distribution over many orders of magnitude of proba-
bility with an equal amount of computational effort as the brute-force ensemble.

Since a toy model even this simple is too complex to solve exactly, we compare the data
from both the single weighted ensemble simulation and the equivalent brute-force simulations
to a more authoritative estimate of the probability distribution obtained by exhaustive
(weighted ensemble) simulation. To obtain this reference value, we performed 64 independent
weighted ensemble simulations with the same parameters as the single “test” weighted ensem-
ble run (blue circles, Fig 8), except that each of the 64 runs had 32 trajectory segments per bin,
rather than 16 for the test run (i.e. approximately 128 times the sampling power of the single
run). From the 64 independent runs (gray circles, Fig 8), we then computed the 95% confidence
interval for the mean probability distribution using 10,000 bootstrap samples at each progress
coordinate, from 0 to 70. Even though the exhaustive weighted ensemble runs and the single
test run use different weighted ensemble parameters (i.e trajectories per bin), this difference
does not substantially affect the sampling quality of the ensembles. Note that the 95% confi-
dence interval for the mean of the true distribution is significantly tighter than the variance of
the distribution of weighted ensemble samples of that distribution; the fact that the single run
falls outside this interval is typical of the stochastic noise inherent in a single WE sample.

As explained in the Methods section, weighted ensemble is able to sample more of the com-
plete distribution by efficiently spreading out the sampling power of the ensemble of trajecto-
ries, allowing the characterization of rare-events by sacrificing some accuracy in the regime
where brute-force samples well (see Fig 2). Examining Fig 8, we see that the brute-force distri-
bution is smoother at the peak of the distribution—indicating less uncertainty—but only mar-
ginally so; the weighted ensemble estimate of the peak of the distribution is also reasonably

Fig 8. Sampling rare states of the toy bindingmodel. Shown is the probability distribution of the number of
bound receptors on the target side of the cell after 10 milliseconds of simulation. The weighted ensemble data
(blue circles) is plotted with brute-force data (red squares) generated using equal computational effort, i.e.
611 brute-force runs. Brute-force sampling is confined to the peak of the distribution, whereas weighted
ensemble sampling captures more of the full probability distribution. To compare both approaches to an
authoritative value, an exhaustive set of 64 large weighted ensemble simulations was performed (grey
circles), from which a bootstrapped 95% confidence interval for the mean probability distribution was
calculated (dark grey bars).

doi:10.1371/journal.pcbi.1004611.g008
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smooth. By sacrificing unneeded resolution at the peak, WE is able to instead spread that sam-
pling power more evenly throughout the state-space of the model, using it to sample the full
probability distribution more comprehensively.

Cross-compartmental signaling network in a realistic cell geometry
The model of cellular signal transduction shown in Figs 5 and 6 contains*105, reactive mole-
cules in a realistic geometry, and demonstrates the ability of the weighted ensemble sampling
approach to scale to large, complex systems. We focus on characterizing the synthesis of pro-
tein P2. The production of P2, the last step in the cascade shown in Fig 6, is challenging to sam-
ple via brute-force. Nonetheless, it is a crucial quantity to calibrate if one is interested in the
effects of spatial heterogeneity on the model, and we do so using weighted ensemble.

To begin our exploration of the signaling model, we initially examine the production of the
protein P2 after 400 seconds of simulation (see Fig 9). The weighted ensemble data was pro-
duced by two independent runs, and the two resulting independent histograms are shown
together. The independent runs allow us to roughly characterize the uncertainty in the esti-
mated probability distribution by simply inspecting the vertical spread in the results.

Detailed exploration of the tail of a probability distribution, as shown in Fig 9, can be inter-
esting in its own right, for instance to detect multimodality, or otherwise explore the state-
space for rare but important events. We are also interested in using the high resolution charac-
terization of the tail of the P2 distribution as leverage with which to facilitate estimation of the
mean time to the production of five P2 molecules. The target of five P2 molecules was chosen
to represent a modest but non-trivial level of P2 production.

To extract information about average P2 production time from short simulations, we work
in a steady-state framework, as described in the Methods section. Using this methodology, we
are able to infer the mean time to the creation of five P2 molecules, a relatively long timescale,
from a weighted ensemble of short simulations. Shown in Fig 10 is probability flux arriving at
the target state of five P2 molecules at each WE iteration, as well as a running average of those

Fig 9. Accelerated sampling of high P2 levels. After 400 simulated seconds (*1 week of wall time for one
trajectory), we plot the histogram of the number of P2 molecules in the cell. The blue and green circles are the
result of two independent weighted ensemble simulations. Note that some data points are missing, because
not all weighted ensemble bins are necessarily populated by trajectory segments at all times.

doi:10.1371/journal.pcbi.1004611.g009
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instantaneous measurements, made using the most recent half of the data up to that time.
When the system reaches a steady-state, the inverse of the probability flux into the target state,
shown for on the right vertical axis of Fig 10, is equal to the mean time to reach the target state.
In Fig 10, we see that the estimated time to the production of five P2 molecules is on the order
of 5,000 seconds. This estimate will converge, within stochastic noise, to the true MFPT of the
system when the flow of probability induced by the recycling process has relaxed to a steady
state; see the Methods section for details.

Although WE is extremely efficient at characterizing the P2 distribution (Fig 9), its perfor-
mance for estimating the MFPT is not exceptional in this case. The twoWE runs require
31,328 seconds (run 1) and 27,408 seconds (run 2) of aggregate simulation to reach the rela-
tively steady estimation shown in Fig 10 at t = 400 seconds. By comparison, to obtain five to
ten events for estimating the MFPT by brute-force sampling would require*25,000 to
*50,000 seconds based on the estimated MFPT of*5,000 seconds. Note that such long runs
would not be able to benefit from parallelization.

The efficiency of the steady-state approach to measuring the mean first passage time
depends on the time to convergence, and the noise of the sampling, once converged. The noise
of the sampling can be reduced by a more densely sampled weighted ensemble, but the time to
convergence is more difficult to characterize. In the approach used here, the latter timescale
depends on the waiting time to typical transition events (e.g. about 200 seconds in Fig 10), and
the time it takes the system to relax to a steady-state. If these timescales (multiplied by the
number of WE trajectories) are close to the timescale of the mean first passage time, then the
estimate may not be particularly efficient. It will, however be less variable than a brute-force
estimate of equivalent sampling power, and more convenient, in that it explores events of very
different likelihood, and efficiently explores the state-space while estimating a key observable.

Fig 10. Steady-state estimate of time to produce five P2. The last event in the complex signaling network
of Fig 6 is the production of P2. Using a steady-state approach, weighted ensemble is able to estimate the
mean time to producing 5 molecules of P2 as approximately 5,000 seconds. The graph shows the probability
flux arriving at the target state (left axis) in each iteration (points), and a running average of that flux computed
from the most recent 50% of the data (lines). The mean time to reach the target state (right axis) is obtained
via the Hill relation (Eq 1), as the inverse of the steady-state flux. Note that during most iterations, zero weight
reaches the target state, as evidenced by the nearly continuous band of points at the bottom of the figure. The
running average of the flux is dominated by these uneventful iterations, and hence is less than the nonzero
instantaneous values.

doi:10.1371/journal.pcbi.1004611.g010
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Time dependent kinetics: Neuromuscular junction
Finally, we apply weighted ensemble sampling to a model of the active zone of a frog neuro-
muscular junction. This system, shown in Fig 7, and described in detail in the Models section,
simulates the dynamics of vesicle fusion in the presynaptic terminal. The MCell model used in
this study is identical to the one described previously [29]. Briefly, calcium molecules are
released into the active zone, and are free to diffuse and bind to the calcium binding sites on
the synaptic vesicles in response to an action potential. When enough calcium binds to a vesicle
in the proper arrangement, the vesicle is considered to have fused.

Calibrating and validating the response of the model against experimental data is of crucial
importance, but at low calcium concentrations, it becomes highly inefficient to perform brute-
force simulation to gather good statistics. In the neuromuscular junction system, the probabil-
ity of vesicle fusion depends on the external calcium concentration and falls off sharply as the
calcium concentration is decreased.

Fig 11 shows the distribution of times to first fusion in the model, or first passage time
(FPT) distribution to fusion, when the external calcium concentration is 0.5 mM and 0.3 mM.
At each concentration, we plot the averaged results of 100 weighted ensemble runs, each of
which was performed as specified in the Models section, as well as the averaged results of
brute-force simulations, which in total required the same computational effort to simulate as
the 100 weighted ensemble simulations (7545 brute-force simulations for the 0.3 mM system,
3513 for the 0.5 mM system). The difference with which the two approaches—weighted ensem-
ble and brute-force—are able to capture the shape of the distribution, and the uncertainty in
the estimation of it, is striking. We are unaware of any definitive methods of estimating error
when the sample yield is extremely low, and hence have omitted error bars when only one or
two samples were obtained.

At low calcium concentrations, the overwhelming majority of simulations do not result in a
vesicle release, which is why brute-force sampling is so ineffective. Notice that the total area
(i.e. the total probability of vesicle fusion) in the histogram for the 0.3 mM condition is only on
the order of 10−4. One would have to perform on the order of 100/10−4 = 106 simulations to
start gathering meaningful statistics (100 samples) with which to compute the fusion time dis-
tribution. This amount of computing (*20 years running in serial, if each simulation only
takes a minute, or*20 weeks, running in parallel on a 48-core machine) is unfeasible to per-
form even once, let alone at all the different settings of model parameters of interest. Using
weighted ensemble, however, it becomes practical to sample this model in the low-calcium
regime, providing critical information for model validation and fitting purposes. The weighted
ensemble sampling for the 0.3 mM condition shown in Fig 11 took time equivalent to 7545
brute-force simulations, and runs in matter of hours in parallel on 48 cores.

Fig 12 summarizes NMJ results at five different experimentally relevant calcium concentra-
tions. The data are a striking recapitulation of an experimentally demonstrated power-law
dependence of probability to fuse as a function of calcium ion concentration [67]. Validating
the model in low calcium regimes has been intractable with traditional sampling approaches.
Using weighted ensemble, we are able to sample the model at all concentrations of interest.

Discussion
Spatial models of stochastic reaction-diffusion processes have found widespread use as tools in
understanding the mechanics of biological processes on the cellular level and beyond [68–72].
Unfortunately, the effective sampling of large, realistic models, and the extraction of well-sam-
pled values of experimentally relevant quantities are often beyond the realm of computational
feasibility. We use a weighted ensemble approach to overcome this impediment and
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Fig 11. Enhanced sampling of the first fusion time distribution in the NMJModel in low calcium
conditions. Shown are measurements of the first fusion (i.e., first passage) time distribution for calcium
concentrations of 0.5 mM (left), and 0.3 mM (right). In both plots, weighted ensemble estimate of the
distribution of first fusion times for the NMJ model (blue), are compared to brute-force estimates (red) made
using the same computational power as the weighted ensemble estimate. Points at the bottom of the plot
indicate no fusion events in that time period. Single points with no error bars indicate only one sample,
yielding no ability to estimate uncertainties. Brute-force sampling sees very few events, and gives a poor
estimate of the shape of the distribution and yields poor confidence intervals (it is unable to exclude zero from
any time point at one standard error). Weighted ensemble is able to capture the shape of the fusion time
distribution, as well as providing good estimates in the uncertainty of the measured values.

doi:10.1371/journal.pcbi.1004611.g011
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demonstrate speedups of orders of magnitude in sampling some observables in complex mod-
els of cellular behavior with spatial dependence. Weighted ensemble is an ideal approach to
employ in addressing the issue of difficult to sample stochastic systems, and because of its effi-
ciency and ease of use, we anticipate many further applications.

Strengths and weaknesses of WE
Strengths. Weighted ensemble is one of many enhanced sampling methods, and one of a

smaller number that provides rigorous kinetics [17]. However, WE stands out from compara-
ble approaches in its modularity, flexibility, and ease of use. Because weighted ensemble only
performs resampling at fixed time intervals, and only when a trajectory transitions from one
state-space bin to another, there is no need to catch trajectories in the act of crossing a state-
space interface. This facilitates the implementation of weighted ensemble as a lightweight
“wrapper code” around any number of simulation engines. A weighted ensemble approach
also parallelizes trivially, as all trajectories are uncoupled while running, and are only compared
intermittently during resampling. This efficiency in scaling has been demonstrated on simula-
tions using over 2000 cores across many nodes on the Ranger supercomputer [37]. Addition-
ally, a weighted ensemble of trajectories always follows the exact dynamics of the system; no
biasing potentials, altered rate constants, change of measure, or other “hands on” tactics are
necessary for efficient sampling.

A significant benefit of the WE approach is the ability to quickly find behaviors of a system
that are very rare, or to detect the presence of multiple stable states of a system with high crossing
barriers. As seen in our study of the cellular signaling model in a realistic geometry, efficient sam-
pling via WE permits estimation of previously unknown long timescales using short simulations.

Weaknesses. All unbiased enhanced sampling methods that sample systems preferentially
along a set of progress coordinates, including weighted ensemble, are useful only insofar as the

Fig 12. Verification of empirical fusion rate law extended to low calcium regime. The probability for the
model to release a synaptic vesicle in the simulation window is plotted vs. the calcium concentration in the
simulation. Weighted ensemble is able to efficiently estimate these probabilities in the low calcium regime
(0.5 mM and below). WE data points and the power-law fit are shown with 1-σ confidence intervals.

doi:10.1371/journal.pcbi.1004611.g012
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state space has been divided along progress coordinates sufficient to characterize processes of
interest. This limitation amounts to employing all of the slow, uncorrelated, degrees of freedom
in the system as progress coordinates. Fortunately, an exhaustive use of all slow degrees of free-
dom is not required, as most will be correlated, and thus redundant descriptors of slow pro-
cesses. Hence a “curse of dimensionality” does not cripple these approaches, and exists only to
the extent that a system has important slow degrees of freedom which are uncorrelated with
binned coordinates, but sufficient sampling is never guaranteed.

Sampling coordinates orthogonal to the progress coordinate will, by definition, not happen at
an enhanced rate, which places a lower limit on the shortest useful simulations that can be per-
formed. For instance, the toy model we investigate has only one effective degree of freedom, and
displays an enormous amount of speed-up in sampling along this coordinate, because there are
no slow orthogonal degrees of freedom being sampled on a slow, “native” timescale. On the
other hand, the signaling model in the realistic cellular geometry shows less enhancement, a fac-
tor of about 105 in sampling large amounts of P2, and less than that in estimating the mean time
to production of five P2. This is because there are degrees of freedom in the system orthogonal to
our progress coordinate that must relax to steady-state at an unenhanced rate, a process which
occurs on a timescale uncoupled to weighted ensemble resampling.

A potential difficulty is that of correlation between trajectories. Since most WE trajectories
share some history by construction, judging the degree to which related trajectories are inde-
pendently sampling the space requires special care [24, 25]. Estimating observables within a
single WE run requires careful consideration of time correlation. Alternatively, as in the pres-
ent study, multiple independent WE runs directly provide unambiguous information on statis-
tical uncertainty.

Weighted ensemble is not guaranteed to enhance sampling for all observables. In essence,
WE will be most useful for the observables that occur with low probabilities on the time
scales of interest. For less challenging quantities, such as the mean first passage time of Fig
10, or the high calcium concentrations of Fig 12, WE may primarily offer the advantage of
simple parallelization.

Summary and outlook
The multi-scale modeling problem posed by constructing accurate, physically realistic models
of cellular level processes is considerable. We have demonstrated the utility of sampling spa-
tially inhomogeneous stochastic simulations of cellular processes using a weighted ensemble
(WE) approach. Although WE cannot estimate every quantity with high efficiency, estimates
for some observables were obtained using orders of magnitude less overall computing than
would have been required with conventional parallelization. We hope that these initial results
will facilitate the study of more realistic and physically accurate spatial models of biological sys-
tems. As an ambitious example, integrating spatial models of stochastic processes with micros-
copy data of protein localization to predict phenotypic response to the perturbations of
interactome networks is an attractive prospect for in silico drug development and personalized
medicine. Currently, the bottlenecks in such a scheme are the lack of accurate models and the
computational resources with which to simulate them. We hope that this work will contribute
to the development of truly physiological computational models.

Supporting Information
S1 Model. Toy model. Files containing the model details and with which one can simulate the
model in MCell.
(ZIP)
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S2 Model. Cellular model in realistic geometry. Files containing the model details and with
which one can simulate the model in MCell.
(ZIP)

S3 Model. Realistic cellular model reaction network. BioNetGen file containing the details of
the reaction network used in the model.
(BNGL)

S4 Model. Neuromuscular junction. Files containing the model details and with which one
can simulate the model in MCell.
(ZIP)
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