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The use of fluorescence microscopy has undergone a major revolution over the past twenty years, both
with the development of dramatic new technologies and with the widespread adoption of image analysis
and machine learning methods. Many open source software tools provide the ability to use these meth-
ods in a wide range of studies, and many molecular and cellular phenotypes can now be automatically
distinguished. This article presents the next major challenge in microscopy automation, the creation of
accurate models of cell organization directly from images, and reviews the progress that has been made
towards this challenge.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Biochemistry and structural biology were revolutionized by the
ability to replace rough approximations of molecular shape and
interactions, such as ‘‘rods,” ‘‘sheets,” and ‘‘globules” with spatially
accurate models of protein structure directly learned from experi-
mental data (such as from X-ray crystallography). Since molecules
rarely have only a single structure, this led to probabilistic models
for structures and structural transitions. This further enabled a
critical advance: the ability to computationally simulate expected
behaviors of molecules without requiring further experiments [1].

Cell biology has only begun to appreciate the need for a similar
revolution in the way in which cell structure is represented. Cur-
rently, an explicit representation of organelle structure is avoided
entirely; words, such as Genome Ontology terms, are used to refer
to organelles with the assumption of a shared understanding of the
structures they display. Communicating that understanding is
done by hand-drawn cartoons or example images. Example images
may include high-resolution reconstructions for a single organelle
or cell, but these are only instances and do not capture the
expected variation in that structure. Variation observed in images
of a structure may be intrinsic (e.g., endosomes vary in size and
shape) or due to measurement noise (e.g., coated vesicles may
appear to vary in size or shape due to digital imaging of a low
fluorescence signal). By assuming intrinsic variation is small,
reconstruction methods have been used on many images to pro-
duce refined structures (primarily at the micron level) [2,3]. How-
ever, for most organelles, intrinsic variation is dramatic.

A natural question then becomes how we can represent the
structure of cellular components that show significant intrinsic
variation in their size or shape. This leads to a larger question:
how can we create predictive models that capture variation in
the organization of entire cells? In order to enable prediction, such
models need to be generative rather than descriptive. The distinc-
tion can easily be seen by considering the task of distinguishing
pictures of apples from oranges. This can be done using a single
feature such as color, combined with the rule that an object is
red if and only if it is an apple. However, if the task is to create
an apple, knowing that apples are red is not nearly enough. As dis-
cussed below, generative models require some choices regarding
the completeness or effectiveness of the description.

Automation of descriptive analysis of high resolution/high con-
tent cell images has progressed dramatically in the past twenty
years [4–8]. The direct creation of generative models from cell
images represents the next major challenge in high content analy-
sis. There are a number of reasons why such generative models
would be useful. First, as just discussed, they would capture the
underlying spatial relationships in a collection of images, that is,
they estimate not only the most probable reconstruction of each
individual cell or organelle (e.g., removing noise in imaging) but
also the modes of variation between individual instances. As such
they are well-suited for representing the large collections of
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images enabled by the development of high content screening and
automated microscopy [9]. Second, models learned separately for
different organelles or structures (i.e., from different sets of
images) could potentially be combined to synthesize a cell contain-
ing all of those organelles in the same cell (assuming that the orga-
nelles do not affect each others position or shape). Third, such
models could be used to predict the distribution of an organelle
in a new cell type (e.g., with a different cell and nuclear arrange-
ment), and those predictions could be rapidly confirmed (or mod-
ified) using feature-based approaches without having to build a
separate generative model for all organelles in each cell type.
Fourth, generative models could provide a better framework for
connecting morphology to the mechanisms that produce it, since
biochemistry could be directly linked to the parameters of the gen-
erative model. Fifth, databases of generative spatial models could
provide an important complement to Genome Ontology terms,
providing a spatial definition of those terms. Lastly, instances
drawn from generative models could be used as the basis for spa-
tially realistic simulations of cellular biochemistry. There are a
number of powerful systems for performing such simulations, such
as MCell [10], VirtualCell [11], Simmune [12] and SmolDyn [13],
but most simulations currently performed with those systems
use a very limited number of manually-segmented and manipu-
lated images to provide compartment geometries. Generative
models can provide, without manual editing, large numbers of cell
geometries with the closed structures that are needed for such
simulations.

Some basic criteria for the creation of such generative models of
cellular structure and organization have been proposed previously
[14]. These were that the models be

(i) automated: learnable automatically from images;
(ii) generative: able to synthesize new, simulated images dis-

playing the specific pattern(s) learned from images;
(iii) statistically accurate: able to capture pattern variation

between cells; and
(iv) compact: representable by a small number of parameters

and communicable with significantly fewer bits than the
training images.

As with most modeling efforts, satisfying the latter two criteria
requires balancing between the complexity and the completeness
of the models (a version of the bias-variance tradeoff [15]). An
illustration is the choice of whether to model the shape of an indi-
vidual organelle (such as a mitochondrion), using an ellipse, which
is very compact, or a mesh, which captures every surface irregular-
ity. Converting these representations into generative models dif-
fers greatly in the amount of training data required – learning a
statistical model of the variation of two or three axis lengths
requires far less data than accurately capturing the relationships
between hundreds or thousands of minor surface variations.

2. Overview of learning and use of generative models of cell
organization

Over a number of years and contributions from a number of
participants, the open source CellOrganizer system has been cre-
ated as a step towards meeting the need for learning and using
image-based generative cell models [14,16–23]. The basic princi-
ples of the CellOrganizer pipeline are illustrated in Fig. 1, and are
generally applicable to efforts in this area. The input is a collection
of cell images, most frequently of cells tagged with fluorescent
probes specific for one or more proteins or organelles. We begin
creation of models from those images by starting with the major
geometric components of the eukaryotic cell, the overall cell and
nuclear shape as reflected by the positions of the plasma and
nuclear membranes. This choice is made not only because these
components provide a logical starting point but also because they
are easy to define even when specific probes are not include to
delineate them. For example, we can get a reasonably good esti-
mate of the plasma membrane position from the autofluorescence
in fluorescent channels used to image other proteins; in the rare
cases where a nuclear marker is not present, we can frequently
make a good estimate of the position of the nuclear membrane
from the ‘‘hole” present in the pattern of other markers. Having
constructed a model of cell and nuclear shape (which we refer to
as a framework model), we next construct other models (e.g., for
organelles) that are conditional on those shapes.

The parameters of the learned model can then be readily com-
pared with those of other, previously learned models, e.g., for dif-
ferent cell types or conditions. We can also use one or more
learned models to synthesize an idealized cell instance free from
blur or noise from imaging. This spatial representation of a cell
instance can then be used to provide the geometries of compart-
ments for use with biochemical models involving different
organelles.
3. Constructing models

We next turn to some specifics on how generative cell models
can be created, including general principles of how CellOrganizer
creates models from image collections. CellOrganizer is a Matlab
package that is accessed by a small number of interface functions
that learn models from images or movies, compare models, and
synthesize images or movies from models. Control over the opera-
tion of those functions is achieved by setting various parameters in
a control structure. The starting point for learning a model is a col-
lection of images. Given the many tools available to segment
images into individual cell regions and the frequent need to tailor
segmentation to a specific collection, CellOrganizer assumes either
that input images either contain single cells or that masks are pro-
vided to define the region corresponding to each cell. It is called
with strings specifying the paths (including optional wildcards
specifying subsets of files in those paths) to images of a cytoplas-
mic or cell boundary marker, a nuclear marker, and any specific
organelle markers or tagged proteins. An optional path can be
given to provide mask images. The algorithms to be used (and
any parameters that they require) are specified through a parame-
ter structure. The primary output is a file containing the learned
model of the cellular components and the relationships between
them, and additional outputs, such as files containing the model
parameters for each cell, can be requested.

An important consideration in constructing cell models is that
they can only reflect the properties of the cells in the image collec-
tion used for training. Thus, models learned from a collection of
fully differentiated cells cannot of course capture behaviors shown
by cells during the differentiation process (i.e., they cannot synthe-
size ‘‘green apples” if trained with only images of red ones). Given a
collection of images of cells at various stages of differentiation, the
model can learn variation in organization associated with that dif-
ferentiation. Similarly, movies rather than static images are needed
as input to learn dynamic behaviors (an example of this is dis-
cussed below). However, it should be noted that models learned
from static images can with some assumptions be used to simulate
dynamics.
3.1. Cell framework models

3.1.1. Nuclear shape models
To illustrate the process, we turn first to modeling the most

basic structural elements of cells, the nuclear and cell membranes.



Fig. 1. Flow chart for creating and using generative models of cell organization.
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A number of different approaches have been described for con-
structing models of either or both of these. While work has been
done on constructing generative models of nuclei or cells by hand
[24,25], we will focus here on learning generative models directly
from images. Manually constructed models may be oversimplified
and may not capture subtle differences between cell populations,
and the approach does not scale to the large collections of images
available for many cells types. For nuclei, parametric approaches
have the advantage discussed above that they are compact and
easy to learn. Examples include 2D medial axis models [14] and
3D cylindrical surface models [18]. Models of nuclear shape varia-
tion are created using these approaches by estimating the param-
eters for each nucleus, and then constructing a statistical model of
the distribution of those parameters over all nuclei available for
training. However, such modeling methods are not suitable when
the assumptions underlying them break down, for example, for
nuclei with concavities.

A powerful alternative, non-parametric approach is based on
performing non-rigid registration of pairs of nuclei [16,26]. This
approach, based on seminal work on large deformation metric
mapping [27], measures the amount of change needed to morph
one nucleus into another as a measure of the ‘‘distance” between
them, as illustrated in Fig. 2 (thus this approach is referred to as
‘‘diffeomorphic”). Once distances are measured for all pairs, a coor-
dinate system is constructed to place all nuclei in a ‘‘map” such
Target shape Starting shape 

 0.0165 0  0.0191 0.0194 0.0195 

Fig. 2. Measuring the distance between two nuclear shapes. The overall difference
between two shapes is estimated by gradually morphing one into the other and
measuring the overall amount of change needed. The cumulative change (shown
below each image) represents a distance between the starting shape and any of the
intermediate shapes. From Rohde et al. [16].
that similar shapes are placed near each other. The construction
of such maps, and how they can be used as generative models, is
discussed in Section 3.1.3.
3.1.2. Cell shape models
Cell shape has also been modeled by a variety of approaches,

both descriptive and generative. For example, statistical models
of cell shape have been created using descriptive features and used
to discover gene perturbations that affect cell shape [28–30]. Work
has also been done using eigenshape methods that can be genera-
tive [31,32]. However, these approaches treated cell shape alone
and did not consider its relationship to other cell components such
as the nucleus. To construct realistic cells, we need to have not just
the ability to accurately generate cell and nuclear shapes but to be
able to generate shapes appropriate for each other and in the
proper position and orientation. This can be accomplished by cre-
ating two models in which one is dependent upon the other, or by
creating a joint model of both components.
3.1.3. Combined models of cell and nuclear shape
The dependent model approach involves learning a nuclear

model from available nuclear images, followed by learning a model
that captures the relationship between each cell shape and its cor-
responding nuclear shape. As illustrated in Fig. 3a, synthesizing a
combined cell and nuclear framework involves randomly choosing
a nuclear shape instance from the nuclear model following by pro-
viding that instance to the cell shape model and using it to produce
an appropriate cell shape. This combination is then passed on to
other models that can synthesize organelle distributions that are
dependent on both the cell and nuclear shape. The first dependent
model of cell and nuclear shape was created for 2D images using a
simple ratiometric approach [14] in which the ratio of the distance
from the center of the nucleus to the cell boundary and to the
nuclear boundary was calculated as a function of the angle from
the major axis of the cell. This was later extended to 3D [18]. As
with the parametric nuclear models, these ratiometric models
are not suitable for complex cell shapes. Regardless of the specific
model used, the advantage of the dependent model approach is
that a single dependent (cell) model can in principle be applied



Fig. 4. Constructing a two-component diffeomorphic shape space map for a
collection of cell and nuclear shapes. The distance between each pair of images is
calculated (a) and stored in a distance matrix (b). The matrix is used to create a map
(c), illustrated in this case using two dimensions (the map is an embedding of the
high dimensional shape space into any desired number of dimensions). A shape can
be generated for new points in the shape space by interpolation of the nearby
shapes (d). In the example, synthesis of the shape at position 5 begins by projecting
a line from the cell at position 4 through position 5 until it hits (at position 3) the
line connecting positions 1 and 2. A shape corresponding to position 3 is then
synthesized by morphing cell 1 into cell 2 just as far as the distance from position 1
to position 3. A shape for position 5 is then found by morphing the shape at position
3 towards position 4. From Johnson et al. [33].

Fig. 3. Example of dependencies between models of cell components. Each circle
represents a model, and the text before the vertical bar describes what component
(s) it generates and the text after the bar specifies what component(s) it requires to
do so. Components are nuclear shape (nuc), cell shape (cell), and organelles (o1, o2).
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to instances generated from different types of independent
(nuclear) models (and vice versa).

The joint model approach has so far been only been developed
using a non-parametric, diffeomorphic approach [33]. An advan-
tage of the diffeomorphic approach is that it can be applied simul-
taneously to multi-channel images. In the simplest form, the image
of the channel corresponding to each component is thresholded or
otherwise processed to produce a mask and all pixels in that mask
are assigned an index for that component (e.g., nuclear pixels are
assigned 2, cytoplasmic pixels are assigned 1, background pixels
are assigned 0). Note that in this approach, pixels can only be part
of one component (thus cytoplasmic pixels are defined as pixels in
the cell shape that are not in the nuclear shape). The process of cre-
ating a joint model of cell and nuclear shape is illustrated in Fig. 4.
The distance between each pair of cells (which measures the
‘‘work” required to morph both the nuclear shape and the cell
shape) is calculated and stored in a distance matrix (Fig. 4a, b). A
map (using two or more dimensions) is then created from that
matrix using a method such as multi-dimensional scaling (MDS)
that seeks to place each cell in the map such that its distance from
each other cell matches as closely as possible the measured dis-
tance (Fig. 4c). Optionally, the map (or ‘‘shape space”) can be con-
verted into a probability density (e.g., by kernel density
estimation). The map (or the matrix that produced it), along with
the masks for each of the shapes, forms the generative model. To
generate a new shape, a position in the map is randomly chosen,
either uniformly or according to the probability density. A shape
can then be generated to correspond to the chosen position using
the experimentally observed cells that surround that position
(Fig. 4d). This is done by (i) projecting a line from cell 3 through
the chosen position onto the line between cells 1 and 2, (ii) morph-
ing cell 1 towards cell 2 just as far as the fractional distance from
cell 1 to the projected position, and (iii) morphing that shape
towards cell 3 to a shape corresponding to its fractional distance.

It is worth noting that this diffeomorphic approach requires sig-
nificantly more computation than approaches using descriptive
features. For example, the time required to calculate a diffeomor-
phic distance for a pair of 144 � 144 � 14 voxel 3D image was
more than ten times the time required to calculated descriptive
features for them [33]. This increased time is due to the need to
iteratively solve a differential equation to find the path that
morphs each into the other. Another difficulty is that the diffeo-
morphic approaches scale with the square of the number of cells,
while parametric approaches scale linearly.
3.1.4. Dynamic models of cell and nuclear shape
The models discussed so far were built using static images of

different cells. Since they capture variation within a population,
one can used them to simulate dynamics of cell and nuclear shape
under two assumptions: that any cell can adopt shapes similar to
any other cell in the population, and that cells adopt new shapes
by smooth and random ‘‘walks” in the shape space. Associated
with the latter assumption can be a subsidiary assumption about
the extent of randomness of their paths in the shape space. As cells
morph into shapes similar to their neighbors, they can show no
preference for which neighbor to morph into, or can show prefer-
ence based on the density of cells that show particular shapes. In
either case, cells are treated as if they are in equilibrium among
all shapes in the shape space.

This is often not the case, as cells may be expected to undergo
more ‘‘directed” shape changes, such as during the cell cycle, dif-
ferentiation or chemotaxis. If movies of cells are available, a model
that captures such directed shape changes can be learned. In the
simplest case, pairs of frames from many movies can be used to
learn the probability that a cell in a given position in the shape
space will move in each direction from that position. Under the
assumption that the direction of each movement only depends
on the previous position (i.e., that the cell follows a first-order Mar-
kov model), a movie with arbitrary temporary resolution and arbi-
trary length can be synthesized even if only pairs of frames are
available (assuming enough pairs are available to make good esti-
mates throughout the shape space). This approach has been
applied to learn dynamic shape models for a number of different
cultured cell lines [33].
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3.2. Models for organelles and other subcellular structures

Once the cell framework is defined either through a dependent
(Fig. 3a) or a joint (Fig. 3b) model, models for particular organelles
can be created relative to it. We first consider those organelles that
are punctate, especially those like lysosomes and peroxisomes that
are membrane-enclosed. The first task is to process fluorescence
images depicting the distribution of proteins contained in these
organelles to identify the positions and boundaries of the individ-
ual organelles. Assuming that these organelles are roughly ellip-
soidal in shape and have a relatively uniform concentration of
the tagged protein within the organelle, the contribution of each
organelle to the fluorescence intensity of each pixel in an image
can be considered to follow a Gaussian distribution. In this case,
the task, given an image, becomes to identify the distribution of
Gaussian objects most likely to have given rise to that image. This
standard Gaussian mixture modeling approach has been used to
identify positions and sizes for vesicular organelles, and the results
used to produce statistical models of the number of organelles per
cell and their variation in size [14,18]. An example of an image syn-
thesized from such a model is shown in Fig. 5.

An alternative approach is to find the positions of individual
organelles using variations on the idea of active contours, piece-
wise functions with geometric constraints that are fit to images.
This approach has been used to model endosomes and analyze
virus entry and endosome fusion events [34]. In this case, the
boundaries of each organelle need not be ellipsoidal, but convert-
ing the boundaries of individual organelles into a generative model
has not yet been addressed.

Since subcellular structures vary tremendously in their size,
shape and distribution, different approaches are needed for model-
ing different classes of them. A particularly difficult problem is the
modeling of filamentous structures, such as microtubules and
microfilaments. While recent progress has been made on algo-
rithms for localizing individual filaments in microscope images
[35] and extensive analysis and modeling has been done at the
leading edge of cells where individual filaments are easier to follow
[36], the tangled web of filaments often seen when viewing whole
cells makes the identification of individual filaments quite difficult.
The direct approach used for modeling punctate structures, in
which the number and distribution of those structures in each cell
is available for statistical modeling, is therefore problematic. An
alternative is to use indirect or inverse modeling, in which a para-
metric, generative model for images is constructed, images are
generated for different values of the parameters, and the best
Fig. 5. Example synthetic image depicting the mitochondrial distribution in a HeLa
cell. The image was produced by generating a nuclear shape from a cylindrical
surface model, generating a cell shape from the nuclear shape using a ratiometric
model, and choosing the number of mitochondria and their sizes from a Gaussian
object model. The nuclear volume is shown in red, the cytoplasmic volume in green,
and the mitochondria in gray.
parameter values are found by comparison of the generated images
to acquired images. This approach has been used for constructing
generative models of microtubules [17] and to compare those
models across different cell types [21].

Much further work is needed to develop modeling approaches
for other organelle types, such as cisternal and reticular organelles.

3.3. Learning the relationships between cell components

A critical requirement for cell model learning systems is some
means of learning the relationships between different cell compo-
nents. For example, the localization of organelles or other struc-
tures can depend upon cytoskeletal elements such as
microtubules; that is, such organelles may normally be in close
proximity due to the presence of molecular motors or other
microtubule-binding proteins on their surfaces. In this case, build-
ing a cell instance containing vesicles and microtubules by synthe-
sizing them independently (Fig. 3c) would be incorrect. The
solution is to learn another level of dependency in which an
instance of a microtubule is synthesized first (dependent on the
cell and nuclear instance) and then the positions (or other aspects)
of organelles are chosen using the microtubule distribution as well
as the cell and nuclear shape (Fig. 3d). We have recently developed
such an approach and used it to show that eleven different classes
of punctate or vesicular organelles can be distinguished from each
other in part on the basis of the extent to which their localization is
dependent upon microtubules [23].

In addition to dependencies between organelle or large macro-
molecular structures, we must also be concerned with the place-
ment of proteins within organelles and relative to each other. In
this regard, we distinguish between colocalization and conditional
localization. Either by colocalization analysis from two or more
proteins in the same images, or by pattern comparison between
separate collections of images for different proteins, we may be
able to determine that those proteins are uniformly colocalized
in a particular organelle. In this case, positions for those proteins
can be randomly distributed within the synthesized instances of
that organelle. On the other hand, we may observe that a given
protein is distributed in a particular pattern relative to an organelle
(such as just on the tips of protuberances or in a single spot on the
membrane). This requires learning yet another layer of conditional
models that specify where to place a protein relative to instances of
that organelle.

In the absence of such models, CellOrganizer currently allows
proteins to be placed at random either within or on the boundary
of organelles. A much better approach is to consider the geometry
of a protein or complex when placing it in a synthetic cell. When
concentrations of proteins or organelles are high this can be a sig-
nificant challenge, but efficient algorithms have been developed to
allow placing of diverse components within cell models [37]. An
additional consideration is the relative positions of flexible
domains within complexes, models for which can be learned
through single molecular fluorescence measurements [38].

All of the conditional relationships we have discussed so far
have been specified during the model construction based on prior
knowledge. An important challenge for the future will be to
develop approaches that can learn the dependencies directly.

3.4. Saving models and instances

In CellOrganizer, all of the models for a particular image collec-
tion are saved into a single file that include specification of the type
of each model (i.e., the algorithm that should be used to generative
examples from the model) and the learned parameters of that
model. While there are standards for exchanging many types of
cell models (e.g., Systems Biology Markup Language, or SBML),
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including standards for individual instances of cell geometry such
as SBML-spatial, there are no current standards for exchanging
generative models of cell geometry (this represents a significant
future challenge). CellOrganizer therefore saves its models either
in the proprietary Matlab binary file format or as XML files with
tags for each field. During synthesis of cell instances, models from
different files can be combined: the framework model from one
cell type can be combined with the lysosome model from another.
4. Comparison of models between conditions

Comparison of cell properties captured from images using
numerical features is central to high content screening and analy-
sis. The parameters of generative models also reflect cell proper-
ties, and can reveal more interpretable differences than general
purpose features such as textures. The parameter values for differ-
ent models (of the same type) could be compared parameter by
parameter to reveal, for example, that models of a particular orga-
nelle for two cell types differ only in the average number of that
organelle per cell. Alternatively, spatial distributions specified by
the parameters of a model (such as a fitted probability distribution
that an organelle will occur at different positions in the cell) can be
compared between models rather than comparing the parameters
themselves (for example, to reveal that an organelle is more likely
to be near the nucleus when a particular gene is knocked down
than when it is not). Either way, comparisons of models can be
used to learn how cell organization changes under different condi-
tions or between cell types; for example, we can learn that a par-
ticular drug causes changes only in cell shape but not organelle
distributions relative to that shape.
5. Comparing different types of models

The creation of models discussed above seeks to find the best
parameters to describe cell instances and the best statistical model
to capture the variation in those parameters in the input cell pop-
ulation. The learning process starts from a specification of the par-
ticular model to be learned; e.g., a Gaussian object model for
vesicle sizes and shapes, logistic regression for vesicle position,
and a multivariate Gaussian for variation in parameters across
the population. This raises two important issues common to many
modeling efforts: how well does the chosen model represent each
instance (cell or organelle), and howwell does the statistical model
capture variation among the instances. The first question can be
answered by measuring the residual error, the difference between
the original cell and the representation of that cell in the model.
For example, a synthetic image can be generated from the repre-
sentation of each cell and the sum of the squared differences in flu-
orescence between the synthetic image and the original image can
be calculated and normalized for the total fluorescence. This can be
done for all cells and, for example, the average error reported. Dif-
ferent model types (e.g., spherical and ellipsoidal Gaussian objects)
can be compared on this basis. The second question is more diffi-
cult, since we normally wish to assess how well the model predicts
which new examples (not used for training) might be found (e.g.,
by additional imaging) and not just how well the distribution fits
the observations we have. This type question is encountered in
many modeling contexts, and a full treatment is beyond the scope
of this article. A basic principle is to estimate the likelihood of new
data given a model using cross-validation. A particular issue is how
well the model captures the possibility that there are multiple dis-
tinct cell subpopulations. The parametric models in CellOrganizer
do not yet deal with this issue, but at least for cell and nuclear
shape, the diffeomorphic approaches readily capture multiple
subpopulations.
6. Using generated cell instances in cell simulations

As mentioned in the Section 1, an important application of the
ability to generate new cell instances is to use them as realistic
geometries for cell simulations. To this end, instances generated
by CellOrganizer can be saved in SBML-spatial (http://sbml.org/
Documents/Specifications/SBML_Level_3/Packages/spatial) so that
they can be used by other programs. Many biochemical models
exist in repositories such as BioModels (https://www.ebi.ac.uk/
biomodels-main), where they are largely in the form of classical
compartmental models that assume compartments are well mixed
and have only area/volume and perimeter/surface area. Such mod-
els (typically stored in SBML) can be combined with a spatial cell
instance from CellOrganizer to create a complete specification of
initial conditions sufficient to perform simulations of spatiotempo-
ral behavior [39]. Using this approach, we have found that differ-
ences in cell geometry can lead to significant differences in the
kinetics of cell signaling processes (Sullivan, Tapia, Faeder, and
Murphy, in preparation).
7. Conclusions

Learning models of the organization of eukaryotic cells is a com-
plex problem that spans many scales and disciplines. We have
focused here on using optical microscope images to identify impor-
tant factors like the sizes and shapes of cellular components, the
numbers of organelles per cell, and the spatial distributions of
organelles within cells. In addition to expanding our ability to build
such models, a future need will be to incorporate ultrastructural
data and molecular dynamics simulation results to identify struc-
tures and variation of individual proteins and complexes. Through-
out the process, it will be critical to choose appropriate statistical
models that adequately capture the interdependence of compo-
nents. For this we need scalable learning solutions combined with
scalable simulation solutions and to be able to rigorously compare
different methods for each step and combinations of methods. A
further challenge will be to choose appropriate methods for creat-
ing simulated cells from the models and visualizing them.

Ultimately, data from perturbation studies should allow us to
learn how model parameters are linked to specific molecular
events.
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