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� Abstract
The goal of location proteomics is the systematic and comprehensive study of protein
subcellular location. We have previously developed automated, quantitative methods to
identify protein subcellular location families, but there have been no effective means of
communicating their patterns to integrate them with other information for building
cell models. We built generative models of subcellular location that are learned from a
collection of images so that they not only represent the pattern, but also capture its var-
iation from cell to cell. Our models contain three components: a nuclear model, a cell
shape model and a protein-containing object model. We built models for six patterns
that consist primarily of discrete structures. To validate the generated images, we
showed that they are recognized with reasonable accuracy by a classifier trained on real
images. We also showed that the model parameters themselves can be used as features
to discriminate the classes. The models allow the synthesis of images with the expecta-
tion that they are drawn from the same underlying statistical distribution as the images
used to train them. They can potentially be combined for many proteins to yield a high
resolution location map in support of systems biology. ' 2007 International Society for

Analytical Cytology

� Key terms
location proteomics; generative models; pattern recognition; subcellular location; shape
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A cell is a complex system with an enormous number of different types of molecules

that form a large interacting network. The growing field of systems biology seeks to

understand how living systems function by modeling such networks at various levels,

including the interaction of molecules in cells (1–3). Building accurate models

requires not only the chemical properties of the molecules involved, but also their

spatial distributions. This is especially important for proteins because the subcellular

location of a protein is so critical to its function that the same protein can have dif-

ferent functions at different locations (4). Thus, cell models will not yield accurate

predictions unless proteins are modeled at their proper locations.

However, it is not easy to integrate subcellular location information into systems

biology. In some cases, cell modeling can be done at a coarse level, such as by consid-

ering each major organelle as a single compartment (5). Given that cells go to great

lengths to build complex subcellular structures, however, it is unlikely that coarse

modeling will be sufficient for all purposes.

Thus, we need approaches that can provide information on subcellular location

with as much resolution as possible. These can be divided into predictive methods

and determinative methods. There has been extensive work on prediction of subcellu-

lar location from sequence (6–9). A range of methods have been described for learn-

ing to make predictions using the sequences of proteins whose location is known,

including methods that use motifs, amino acid composition, homology, and combi-
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nations thereof. The major limitation of current systems is the

resolution of the subcellular location assignments in the train-

ing data. These have been at the level of a handful of major

organelles, and thus current systems are unable to predict the

distribution of proteins within subcellular structures. In addi-

tion, while some systems can predict that proteins are located

in more than one structure, they are unable to make quantita-

tive predictions of the distribution of proteins between those

structures. Lastly, current systems cannot predict dynamic

behaviors such as cycling of proteins between compartments

or changes in distribution resulting from stimuli. Thus, while

the sequence-based machine learning methods that have been

described are in theory well suited to the problem, their utility

will only be fully realized when adequate high-resolution

training data are available.

That is the domain of determinative methods. Currently,

the best way to obtain high-resolution location information for

many proteins is to acquire images by microscopy. Although

visual examination is widely used to capture information from

the resulting images, a more efficient way to extract and analyze

the location information is using computer vision and machine

learning methods (10,11). Previously we have designed Sub-

cellular Location Features (SLF) to describe the patterns in

microscope images (12,13) and the SLF allowed us to develop

methods to determine locations automatically (12,14–17).

These methods can be divided into two categories, classifica-

tion and clustering, where the main difference is whether the

set of location patterns is predetermined. In classification, any

input image will be assigned to one of the classes (e.g., major

organelles) that were used to train the classifier. In contrast,

clustering does not assume that the categories are known but

rather finds them by grouping similar patterns. With well-

designed features, each category is expected to represent a sin-

gle location pattern. Using a consensus clustering approach

that is designed to yield reproducible clusters, we have built a

subcellular location tree for 3D images of CD-tagged 3T3 cells

(16) and shown that location patterns falling in the same

human-labeled category can be separated into statistically dis-

tinguishable groups. These groups can be considered as subcel-

lular location families, by analogy with families of proteins that

share similar sequence (18) or structure (19).

However, learning what patterns are possible and which

proteins display them is not sufficient for integrating location

information into systems biology studies. Ultimately, location

information must be incorporated into cell models to capture

cell behaviors that depend on proper protein locations. To this

end, images of location patterns can be used directly by some

simulation programs after appropriate segmentation or recon-

struction (20,21). However, this approach does not readily

permit the effects of variation in pattern on the results of

simulations to be considered in a systematic way. In other

words, in the absence of a model for the variation in a pattern,

the degree to which results of simulations depend on that

variation can only be assessed by performing simulations for

different input images. However, if a model is available, the

choice of which patterns (and how many patterns) to use for

simulations can be made in a principled manner taking into

account the modes of variation in the pattern. Furthermore,

the use of actual images as a base for simulations does not

permit multiple proteins to be included in the same simula-

tion unless they have been simultaneously imaged (e.g., using

multiple fluorescent probes). As the number of proteins to be

included grows, it is increasingly unlikely that they will have

been imaged in the same cell unless specific experiments are

done in contemplation of simulation. Even so, the number of

proteins that can be simultaneously imaged in living cells is

currently less than 10. An important alternative made possible

by pattern models then is to combine models from separate

images. In view of the above, we describe here methods for

building probabilistic models that are learned from images of

a location pattern and which we propose can be used to effec-

tively include location information in cell simulations. Since it

is straightforward to collect multichannel images in which

distinguishable fluorescent probes are used to detect a specific

protein in parallel with reference markers (such as DNA), we

design our models to utilize markers for nuclear and cell shape.

The goal of the work described here is to build models of

the distribution of a protein within a given cell type that are

� automated in the sense that they are learned directly from a

set of microscope images,
� generative in the sense that they are able to synthesize new

examples of the pattern observed in that set,
� statistically accurate in the sense that they reflect the varia-

tion in the pattern from cell to cell,
� compact in the sense that they can be communicated with

significantly fewer bits than the training data.

With these definitions, we formalize the problem as

� Given a set of three-channel microscope images containing

information in separate channels about the position of the

cell boundary (plasma membrane), the distribution of nu-

clear DNA, and the distribution of a specific protein,
� Build an automated, generative, statistically accurate, and

compact model of the distribution of that protein inside a

cell described by its nuclear DNA distribution and plasma

membrane location.

Our approach will be to construct a nested set of condi-

tional models. We start by using a medial axis model to repre-

sent nuclear shape and a texture model to represent DNA dis-

tribution within that shape. Using the nucleus as a starting

point, we generate a cell shape model. Finally, the nuclear

shape and cell shape serve as a framework for locating specific

proteins. The work described here uses 2-dimensional images

and models to illustrate the principles and feasibility of the

approach, and it is important to note that other choices are

possible for each component of the model and that no claim

of optimality is made. Work on building 3-dimensional mod-

els and using other model components is in progress. In this

initial work, we also consider only interphase nuclei to sim-

plify the task; future work will focus on a dynamic model

incorporating variation across the cell cycle.
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MATERIALS AND METHODS

For development and testing of the algorithms described

here, the images from the 3D HeLa dataset described pre-

viously (14) were used (available from http://murphylab.

web.cmu.edu/data/3Dhela_images.html). The dataset contains

three fluorescence channels for each field, reflecting the distri-

butions of DNA, total protein, and one of nine specific pro-

teins. Each field has been previously segmented into single cell

regions using a seeded watershed approach (14). Since the

models we describe here are two-dimensional, we extracted

from each 3D stack the 2D slice that contained the largest total

intensity in the DNA channel. Of the 454 images in the data-

set, 7 did not have a complete cell boundary in this slice. We

therefore ignored these images leaving 447 images for the stu-

dies described here. Protein location models were created for

six of the proteins in the dataset, including giantin, gpp130

(both Golgi proteins), LAMP2 (a lysosomal protein), a mito-

chondrial protein, nucleolin (a nucleolar protein) and trans-

ferrin receptor (an endosomal protein).

The algorithms used in this work were implemented

using Matlab (7.0 R14, The MathWorks) and all code is avail-

able from http://murphylab.web.cmu.edu/software. While the

specific algorithms for creating each component of the model

are described in the Results, additional implementation details

are presented here. For modeling nuclear shape, a principal

axis alignment was done for each nuclear (DNA) image as

described previously (22). Briefly, after thresholding using the

Ridler-Calvard method, each nucleus was rotated to align its

major axis and rotated an additional 1808 if necessary to

match the sign of the skewness along the minor axis. For mod-

eling nuclear texture, texture synthesis toolboxes were down-

loaded from http://www.nealen.net/projects/texsynth/hts_code.

zip and http://www.cns.nyu.edu/�lcv/texture. The hybrid tex-

ture synthesis code was modified slightly to avoid searching

patches of background pixels so that background would not

be counted as a part of the texture. For modeling cell shape,

the total protein image was thresholded just above the most

common pixel intensity and the largest resulting object (the

cell) was then filled and outlined. For estimating Gaussian

object mixtures, EM code originally from the NETLAB library

(http://www.ncrg.aston.ac.uk/netlab) for Matlab was used.

Some modifications were made to support estimating the

weighted Gaussian mixture. For classifying patterns, the code

to calculate feature set SLF7DNA from the SLIC library

(http://murphylab.web.cmu.edu/software) was used. The SDA

implementation in SLIC was also used. Code for training and

using support vector machines was obtained from the

LIBSVM library (http://www.csie.ntu.edu.tw/�cjlin/libsvm).

A Gaussian kernel was used and the parameters were searched

automatically for best performance on the training set in each

trial.

RESULTS

Medial Axis Model of Nuclear shape

Building a model for nuclear shape is the first step in our

modeling procedure. This is important in its own right given

the critical role of the nucleus in duplicating and expressing

genetic information. In addition to indicating the state of the

cell cycle, the size and shape of the nucleus can affect gene

expression and protein synthesis (23).

Interphase nuclei typically have a shape similar to an ovoid

or ellipse (Fig. 1), which is a uniaxial object. We have therefore

used a method adapted from medial axis transformation (24–

26) to fit the shape. For a 2D shape, the traditional definition of

a medial axis is a set of the centers of the circles that support the

shape. This is the same as building a Voronoi graph for all the

points on the shape boundary in the 2D space. In our version of

medial axis representation, we restrict the distance calculation

of the Voronoi graph to one dimension, the x-axis. This can

avoid generating branches, which will make a shape much

more complicated to model. It also reduces the complexity of

computation, as is described below.

We consider the shape of a nucleus to be described by a

parametric curve [x(t), y(t)]. We can define another curve

h(u) 5 [y(t1) 1 y(t2)]/2, where t1 and t2 satisfy xðt1Þ ¼
xðt2Þ ¼ u, yðt1Þ ¼ maxfyðtÞjxðtÞ ¼ ug and yðt2Þ ¼ min

fyðtÞjxðtÞ ¼ ug. These definitions find the highest and lowest

points along a series of lines perpendicular to the major axis

of the nucleus and then averages them to find h(u), which is

the medial axis. The width along the medial axis is w(u) 5
y(t1) 2 y(t2). For convenience, we normalize distances so that

u is in the interval [0,1]. Given the medial axis and the width,

we can easily reconstruct the shape. This definition also pro-

vides an easy way to find the medial axis in an image. Given a

DNA image for a single cell region, we threshold it to yield an

M 3 N binary digital image f(i,j), where i 5 1,2,. . .,M, j 5
1,2,..,N. f(i,j) 5 1 only when the pixel (i,j) belongs to the nu-

clear object (i.e., is above-threshold); otherwise f(i,j) 5 0.

Then the medial axis of the nucleus in this image is defined on

fij9j; f ði; jÞ ¼ 1g and a point of the medial axis at position i is

ðminfjjf ði; jÞ ¼ 1g þmaxfjjðf ði; jÞ ¼ 1gÞ=2. Thus the width

is wðiÞ ¼ maxfjjðf ði; jÞ ¼ 1g �minfjjf ði; jÞ ¼ 1g. Figures

2a–2d illustrate the steps we have used to convert a nuclear

image into a medial axis representation.

Each of the two parts of the medial axis representation,

the medial axis and width, can be represented by a curve. To

parameterize such a curve, we fit a fourth order B-spline with

one internal point; we chose this order because it gives very

good fits to the nuclear width (Fig. 2f) and reasonably accu-

rate fits to the medial axis itself (Fig. 2e). (Some of the high

frequency variation in the medial axis may be due to digitiza-

tion artifacts from rotation; the spline fit results in some

smoothing of this variation but may also smooth nuclear

blebs.) Combining the six parameters for each of the two

spline fits with a parameter for the range of the medial axis

along the x-axis gives a total of 13 parameters for nuclear

shape. We have observed the fitted values of the internal point

to be around 0.5 for both the medial axis and width curves

and to have little contribution to the variation of the shape

(data not shown). Since the curves are defined over the inter-

nal [0,1], this suggests that nuclei are roughly symmetric

about their center. We therefore chose to take the internal

point as a constant, leaving 11 remaining free parameters.
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A statistical model is required to describe the variation of

parameters from nucleus to nucleus. As an initial approach,

we have chosen to use multivariate normal distributions to

represent this variation. Figure 3 shows quantile–quantile

plots of each parameter (a straight line on these plots indicates

close agreement to a normal distribution). The range of the

medial axis (Fig. 3a) and the parameters of the width curve

(Figs. 3g–3k) are all fit well by normal distributions, while the

parameters of the medial axis curve are not as well fit (we

intend to consider other distributions in future work). For

distribution estimation, we assume that the parameters of the

medial axis and width are independent. This increases the flex-

ibility of shape distribution and reduces the number of para-

meters. Subject to the assumption of normality for the para-

meters, we can capture the entire nuclear shape model using

47 values: the 11 means for each parameter and the 36 entries

in the covariance matrices of the medial axis and width pa-

rameters (the medial axis has six parameters giving 21 unique

entries in its covariance matrix, and the width distribution has

five parameters giving 15 entries in its covariance matrix). To

generate a nuclear shape, we can draw parameters from the

normal distribution (Fig. 3) and then construct a shape from

the drawn parameters.

Texture of Nucleus

Given an image of the DNA distribution of a cell, the nu-

clear texture reflects the condensation of chromosomes within

the nucleus and the variation in DNA content along each

chromosome. Nuclear texture analysis has shown to be signifi-

cant for biomedical studies such as cell cycle examination (27)

or disease diagnosis (28,29). The next task we consider is

therefore building a model for chromatin texture that can be

used to synthesize realistic nuclear DNA images.

We chose to apply texture modeling and synthesis techni-

ques frequently used for natural images (30). However, these

techniques work best for textures that are homogeneous

within a shape, which is usually not the case in a nucleus.

Among many reasons, this is because the average intensity

decreases from the center of a nucleus to its boundary (Fig. 4).

This is because of decreasing thickness of the three-dimen-

sional ellipsoid nucleus near its edge and also because regions

in the middle of the nucleus may contain more out-of-focus

light from above and below the image plane. So before esti-

mating a nuclear texture model, the pixel intensities must be

adjusted for variation in average intensity across the nucleus.

This variation can be fit well by a function derived from ellipse

projection (Fig. 4): f ðdÞ ¼ a þ bð1� d2Þ1=2 þ cð1� d2Þ1=4,
where d is the normalized distance to the center of the nu-

cleus. After finding the function parameters, the intensity

Iðx; yÞ at the position ðx; yÞ is scaled as Iðx; yÞ=f ðdðx; yÞÞ.
After intensity normalization, we used a neighbor-based

method to extend the texture to remove all background (31).

The texture image is then modeled by a parametric model

using wavelets (32). Combining the medial axis shape model

with the texture model allows us to synthesize nuclear images

with proper shape and approximate chromatin texture

(Fig. 5).

Shape Model of Cells

By definition, subcellular location of a protein takes place

within the bounds of the plasma membrane. We therefore

Figure 2. Example of fitting the medial axis description of a nu-

clear shape by B-splines. The original image (a) containing a nu-

cleus was processed into a binarized image (b), in which the nu-

clear object consists of the white pixels. The nuclear object was

rotated so that its major axis is vertical (c). It is then converted

into the medial axis representation (d). The horizontal positions of

the medial axis as a function of the fractional distance along it are

shown by the symbols in (e), along with a B-spline fit (solid

curve). The width as a function of fractional distance is shown by

the symbols in (f), along with the corresponding fit (solid curve).

Scale bar, 5 lm.

Figure 1. Examples of nuclear images. The 447 nuclei in the 3D HeLa dataset were ranked by their Mahalanobis distances to the mean

value of the 11 parameters describing the shape based on medial axis. The nuclei shown are (a) the most typical nucleus, (b) the 100th

most typical nucleus, (c) the 200th most typical nucleus and (d) the 400th most typical nucleus. Scale bar, 5 lm.
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next incorporate a model for cell shape. Different types of cells

can have very different shapes, which are often related to their

functions. For example, a neuron has a tree-like structure for

signal conduction, while columnar epithelial cells are roughly

rectangular so that they can be tightly connected to separate

different environments. What we deal with here are shapes of

cultured HeLa cells, which adhere to glass surfaces and spread

their cell bodies out to take on a ‘‘fried egg’’ shape (Fig. 6).

Although some general shape models such as polygons

(33) or active shape models (34) have been used to model cell

shapes, for our purposes we wished to make the cell shape

model conditional on the nuclear model described above (that

is, we wished to consider the correlation between the shape of

a cell and its nucleus). Figure 7 shows the histogram of the dif-

ferences between nuclear major axis angle and cell major axis

angle and the histogram of the distances between the nuclear

Figure 3. Estimating normality of the distributions of the parameters of the medial axis representations for all nuclei. Quantile—quantile

plots comparing the distributions of each parameter across all 447 nuclei (on the vertical axis) to a Gaussian distribution (on the horizontal

axis) are shown. (a) The length of the medial axis. (b—f) The five parameters of the medial axis curve. (g—k) The five parameters of the

width curve.
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center and cell center. From Figure 7a we concluded that the

nucleus and cell are aligned at similar orientations. Similarly,

Figure 7b shows that the center of the nucleus and the center

of the cell are typically close to each other, with an average

distance of 2.2 lm. If we model the cell shape independently,

we then need to model the correlations between nuclear and

cell alignments, including positions and orientations. But if

we build a cell shape model that is conditional on the nuclear

shape model, this will not be necessary.

The conditional shape model we build can be illustrated

in a polar coordinate system, of which the origin is at the cen-

ter of the nucleus. The boundary of the nucleus and the

boundary of the cell are denoted as dn(h) and dc(h) respec-

tively, where h is the angular coordinate and belongs to [0,2p].
Because we know dn(h), it would be sufficient to describe the

cell shape using the radial coordinate ratio between the two

shapes. We call this the shape ratio of a cell, which is also a

function of angles and denoted as r(h)5dc(h)/dn(h).
If we sample h over 3608 in 1 degree increments, a shape

will be represented by a vector of length 360. Estimating the

statistical distribution of the vectors will require much more

data than we have to guarantee accuracy. To solve the problem,

we used principal component analysis (PCA) to reduce the

dimensions, as was done in active shape models (34). First,

the average shape ratio was calculated by taking the mean of

the shape ratios of all the cells. The residuals (the differences

between a cell’s shape ratio vector and the average shape ratio

vector) were calculated for each cell. So the average ratio �rðhÞ
and the residual diðhÞ of the ith cell are calculated as

�rðhÞ ¼ 1
N

PN
i¼1riðhÞ and diðhÞ ¼ riðhÞ � �rðhÞ, where N is the

number of cells. The principal components representation of

diðhÞ is
PN

j¼1kij ejðhÞ, where ej is the j th principal component

and kij is its coefficient from the ith cell. The indices are

arranged in decreasing order of their contribution to the over-

all variation. We can discard some components without losing

the essential properties of the shape.

The kij matrix can be modeled by a multivariate normal

distribution, from which we can draw samples to synthesize a

cell shape. In our implementation we used 10 components,

which contain about 90% of the variation (data not shown).

Figure 8 shows the average shape and shapes illustrating the

four highest modes of shape variation. An example shape

synthesized from the model with 10 components is also

shown. The cell shapes represent good approximations to real

cell morphologies, although fine structure in the cell bound-

aries is not captured well.

Protein Object Modeling

Gaussian objects. Previously we have shown that subcellular

location images can be well-modeled by combinations of indi-

vidual objects, which are defined as contiguous regions of

non-zero pixels in a segmented image (35). We therefore focus

in this paper on patterns that are comprised mainly of small,

roughly ellipsoidal objects (such as lysosomes and endo-

somes). To model these objects as seen in 2D images, we can

use 2D Gaussian distributions, N(l,S), where l ¼ lx
ly

� �
and

R ¼ Rxx Rxy

Ryx Ryy

� �
. These parameters can be directly calcu-

lated from the image of a single object. However, organelles

such as vesicles can aggregate or overlap to form a larger object

in an image that is non-Gaussian in shape. We therefore used

Gaussian mixture distributions to describe the large objects as

combinations of smaller objects.

Figure 4. Capturing nuclear intensity variation. The intensity in a

nucleus decreases from the center to the boundary (x) and it can

be fit by a simple function as described in the text (solid line).

Figure 5. Examples of synthesized nuclei. Each nucleus is synthesized with two parts, shape and texture.
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The probability density function (PDF) of a Gaussian

mixture distribution can be denoted as f ðx j#Þ ¼Pm
k¼1pkgðxjlk ;RkÞ, where # ¼ fpk; lk ; Rk j 0 � pk � 1;

k ¼ 1; . . . ;mg, Pm
k¼1pk ¼ 1 and gðx j lk ;RkÞ is the PDF of the

Gaussian distribution with mean lk and covariance matrixP
k. In fact, the Gaussian mixture distribution can describe

small objects as well because a Gaussian distribution is a Gaus-

sian mixture distribution with one component.

The expectation-maximization (EM) algorithm can be

used to estimate a Gaussian mixture distribution (36). How-

ever, the EM algorithm requires the number of components as

an input. To estimate this number for an object, we used a

low-band filter to smooth the object and the take the number

of local maxima of the object intensities as the number of

components. Since each data point has a weight, which is the

intensity of the pixel ðwi ¼ Iðxi; yiÞÞ, we used the weighted

EM algorithm as follows,

E step:

aik ¼ P
ðtÞ
k gðxijlðtÞk ;

PðtÞ
k ÞPm

k¼1 P
ðtÞ
k gðxijlðtÞk ;

PðtÞ
k Þ

M step:

For k from 1 to m

P
ðtþ1Þ
k ¼ 1PN

i¼1wi

XN
i¼1

wiaik ;

lðtþ1Þ
k ¼ 1PN

i¼1wiaik

XN
i¼1

wiaikxi;

Xðtþ1Þ
k

¼ 1PN
i¼1wiaik

XN
i¼1

wiaikðxi � lðtþ1Þ
k Þðxi � lðtþ1Þ

k ÞT :

The solutions were obtained when the iteration of the

two steps converged.

The representation of Gaussian mixture leads to a new

definition of objects, which are called Gaussian objects because

each object is defined as a density function of a 2D Gaussian

distribution multiplied by a total intensity (this is pk
PN

i¼1wi

for the kth component). In the general Gaussian object, all of

the elements of the covariance matrices are free parameters.

However, this can lead to fitted objects with very large or

highly elongated shapes not typical of subcellular organelles

like lysosomes and endosomes (Fig. 9). To minimize this

effect, we can require each Gaussian object to be circularly

Figure 6. Examples of cells with different shapes, including a cell with the smallest cytoplasm-nucleus area ratio (a), a cell with the ratio

closest to the average ratio (b), and a cell with the largest ratio (c). Scale bar, 5 lm.

Figure 7. The correlation between the cell morphology and nuclear morphology is shown by (a) the histogram of the differences between

nuclear angle and cell angle and (b) the histogram of the distances between nuclear center and cell center.
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symmetric (by constraining the covariance matrix to have

equal values along the diagonal and zero values for the off-

diagonal elements). This gave better results (as judged by

comparison with real images) than the full covariance ma-

trix (data not shown).

To describe the statistics of the Gaussian objects, we

found that the standard deviation of the objects (which con-

trols their size) can be fit by an exponential distribution (Fig.

10a). In addition, the relative intensity of objects, which we

define as the square root of the ratio between the intensity and

variance, can also be fit by a Gaussian distribution (Fig. 10b).

The distribution of the number of Gaussian objects in each

cell can be fit by a Gamma distribution (Fig. 10c). To deter-

mine how many Gaussian objects exist in a cell, we draw a

number from the Gamma distribution and round it to the

nearest integer.

Object position model. In addition to the number and sizes

of objects in a cell, the positions of these objects are important

for synthesizing a realistic pattern. Proteins can be readily

divided into cytoplasmic, nuclear, or membrane bound.

Therefore, we modeled the positions of protein-containing

objects using two parameters describing their relationship to

the nuclear and plasma membranes. The first, r, is defined as

the ratio of the distance of a given object to the nuclear mem-

brane to the sum of that distance and the distance to the cell

membrane. The second, a, is defined as the angle between a line

from the center of the nucleus to an object’s position and the

major axis of the nucleus. The distance of an object to the cell

boundary or nuclear boundary can be found by building dis-

tance maps. For example, to calculate the distance of an object

to a nucleus, we first obtain a binary image that only contains

the edge of the nucleus. Then we build a distance map in which

Figure 8. Illustration of the conditional cell shape model. In the cell shape model described in this paper, the shape of a given cell is

described by the ratio of the cell size to the nuclear size at each of 360 angles. Variation in cell shape is captured in two parts, the average

shape ratio and the variation of the differences between specific cell shape ratios and the average shape ratio. The six figures shown here

are (a) the cell morphology corresponding to the average shape ratio, (b—e) the cell shapes after adding each of the first four principal

components respectively, and (f) a cell shape synthesized with shape ratios drawn at random from the distributions. For figures (b—e), the

ith principal component was added with the coefficient 1.5 ri, where ri is the standard deviation of the coefficient of the ith component
(the square root of the eigenvalue of that principal component).

Figure 9. Example of fitting objects by 2D Gaussian mixture. (a) An image containing the original object is (b) smoothed by a Gaussian

lowpass filter. Then the number of Gaussian objects is decided by the number of local maxima in the smoothed images. We can use either

(c) spherical or (d) full covariance matrices while fitting the objects by the EM algorithm.
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the intensity of the pixel is the smallest distance of that pixel to

the nuclear edge. The distances to the cell membrane were

obtained in the same way. This permits the distribution of

object positions for a given cell to be converted into a distribu-

tion of r,a values. We model this distribution or potential (the

probability that a given position is the center of an object) as

Pðr; aÞ ¼ eb0þb1rþb2r
2þb3sinaþb4cosa

1þ eb0þb1rþb2r2þb3sinaþb4cosa

and determine the values of the parameters by logistic regres-

sion. Here the angle is transformed into the linear combina-

tion of sin and cos functions because its value is periodic, i.e.

a and a1 2p are the same angle. The parameters in this model

can easily be interpreted. For example, b1 shows whether the
protein is more likely overlapping (when b1 is positive) or not
overlapping (when b1 is negative) the nucleus. b3 and b4
determine whether the protein is more likely distributed along

the major axis (when |b3| is small and |b4| is large) or minor

axis (when |b3| is large and |b4| is small) of the nucleus.

Figure 11 shows examples of potentials learned from

images of the lysosomal protein LAMP2. To use the potentials

to predict object positions, we normalized them so that their

sum is 1. This makes them the probabilities of an object being

found at each location in the two-dimensional image grid. To

obtain object locations for a synthetic image, we randomly

choose the number of objects for that image from the Gamma

distribution discussed above and then randomly draw that

many object positions from the multinomial distribution spe-

cified by the position probabilities.

Given this model for protein object positions, we can

finally synthesize location images containing all three chan-

nels; examples synthesized from the trained models for six

proteins are shown in Figure 12. Many additional example

images are available at http://murphylab.web.cmu.edu/data.

Evaluation of Synthesized Images

Having described how the generative model is created

and how it can be used to synthesize images, the natural ques-

tion is: How good are the synthesized images? We expect that

the synthesized images from good generative models should

be similar to real images. A simple way to verify this is to

visually determine the degree of difference between the real

Figure 10. Statistics of Gaussian objects for lysosomal protein images. (a) The distribution of object sizes across all images and the corre-

sponding fitted Gaussian distribution. (b) The distribution of relative intensity per object across all images and the corresponding fitted

Gaussian distribution. (c) The distribution of number of objects per cell and the corresponding fitted Gamma distribution.
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and synthesized images. However, this is not a suitable

approach for our generated images, which are visually distin-

guishable from real images because a number of sources of

noise have been removed to estimate an ideal distribution. It

is also difficult to make quantitative estimates of similarity

using visual examination. We therefore chose to compare the

images using the Subcellular Location Features, which have

been shown to represent location patterns very well (13). This

can be done by training a classifier on SLF of real images and

then applying it to the SLF of synthesized images to see how

well the synthesized images can be classified. Here we used the

SLF7DNA feature set minus feature SLF7.79, the fraction of

cellular fluorescence not included in objects (since the synthe-

sized images contained no fluorescence that was not in ob-

jects). This left 89 features, including 13 texture features after

downsampling to a pixel size of 1.15 lm and 32 gray levels,

49 Zernike moment features, 5 object skeleton features, 8 mor-

phological features, 6 DNA features, 5 edge features, and 3

convex hull features (12,13). We used stepwise discriminant

analysis (SDA) (37) to select the most informative features for

both the real and synthesized images. SDA returned 40 fea-

tures ranked in order of their ability to distinguish the classes.

Support vector machines were trained on the real images using

increasing numbers of these features. These were applied to

the synthesized images to test how well they can be recognized.

We considered the DNA pattern as a class, represented by the

synthesized nuclear images.

Figure 13 shows the average accuracies of classifying real

and synthesized images using various numbers of features.

The average classification accuracies were calculated after mer-

ging the two Golgi proteins, giantin and gpp130, into a single

class since their patterns are so similar. Variation in accuracy

occurs as additional features are added, due to at least two

sources. The first (small) source of variation is the sampling

variation that happens between averages of random cross-vali-

dation trials. The second, larger source of variation occurs

only in the case when the population of training images is not

expected to be identical to that of the testing images (e.g., for

the case of training using real images and testing using syn-

thetic images). In this case, the addition of a feature that dis-

tinguishes among the classes of the real images better than

among the synthetic images can lead the classifier to put

weight on that feature at the expense of the previous features,

and lead to a decline in performance. The decline can poten-

Figure 11. Illustrations of object position potentials. The estimated potentials of object positions for lysosomal proteins are shown for two

cells as a surface in 3D space. The higher the pixel, the more likely it is for an object to be located at that position. Cell (blue) and nuclear

(red) outlines are shown and the protein is shown in green.

Figure 12. Synthesized images for different protein patterns. Red:

nucleus; Blue: cell membrane; Green: protein. The proteins are:

(a) giantin, (b) gpp130, (c) LAMP2 (lysosomal), (d) a mitochondrial

protein, (e) nucleolin, and (f) transferrin receptor (endosomal).
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tially be partially reversed if a new feature is added that distin-

guishes among the classes well for both the real and synthetic

images.

Among the feature sets giving classification accuracies on

real images that were higher than 90%, a set of 16 features

resulted in the best classification accuracy for the synthetic

images, 71%. The confusion matrix for this case is shown in

Table 1. The accuracy of classification of real images of nine

classes is 95%, which means that these features contain almost

all necessary information to distinguish the major patterns.

The average accuracy of classification using only synthesized

images is 87%. Thus the images generated by each of the mod-

els are clearly different from each other even if they are not

always correctly recognized by a classifier trained on real

images.

We further tested how well the model parameters could

be used to discriminate real images. According to the models,

each protein image has nine features, one parameter for the

number of Gaussian objects, one parameter of object size dis-

tribution, two parameters of object intensity distribution and

five parameters of object position model. Using just these nine

features we obtained a classification accuracy for real images

of 88% (Table 2), which means that the models captured most

essential information to distinguish the six patterns. This is an

important result in that the generative model parameters may

be considered to be a more ‘‘natural’’ representation of the

image patterns than previously described features.

DISCUSSION

This paper presents a framework for building generative

models of location patterns. The ability to represent and gen-

erate subcellular distributions for all proteins will be impor-

tant for systems biology. An important aspect of our frame-

work is that the parameters of the models are all learned from

real data, enabling them to be applied to large scale projects

that are analyzing thousands of proteins (38). A critical advan-

tage of generative models over simple collections of images for

the purpose of representing subcellular patterns is that correla-

tions between components of the model (such as possible

correlations between nuclear orientation and cell shape) that

might be difficult to perceive from visual inspection can be

identified and captured.

Beyond simply describing a system for building such

models, however, we have also described an approach for the

evaluation of the images generated by these models using clas-

sifiers trained on real images. This is a critical advance, since

there are many possible approaches to model building that

could be considered. The results in Table 1 show that most

synthesized images were correctly classified and also indicate

which patterns need further model improvement in future

work. The only pattern classified with low accuracy is the mi-

tochondrial pattern, for which most images were classified as

the endosome pattern.

We note also that the use of generated images in simula-

tion studies in the future will provide an additional (and

potentially better) way to evaluate them: how they affect the

agreement between simulation results and experimental

Figure 13. Evaluation of synthesized images. Classification

accuracies are shown as a function of the number of features

used under three conditions: classifying synthesized images by a

classifier trained on real images (x), training and testing on real

images using cross validation (2) and training and testing synthe-
sized images by cross validation (2).

Table 1. Classification of synthesized imagesa

TRUE CLASSIFICATION

OUTPUT OF CLASSIFIER

DNA ER ACTIN GIA GPP LYSO. MIT. NUC ENDO. TUB.

DNA 100 0 0 0 0 0 0 0 0 0

Gia 0 0 0 31 54 13 0 1 1 0

Gpp 0 0 0 24 62 11 0 2 1 0

Lyso. 0 0 0 7 4 50 7 0 32 0

Mit. 0 0 0 0 0 2 18 0 80 0

Nuc. 1 0 0 4 15 0 0 80 0 0

Endo. 0 2 0 0 0 1 2 0 91 4

aA classifier was trained using 16 features of real images. One hundred images were generated for each pattern shown in the row

headings. The values shown are the percentage of synthesized images for each row that were classified as one of the 10 patterns shown in

the column headings. Boldface numbers indicate the percentage of correctly classified images.
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results. Such studies will also potentially indicate directions to

improve the models.

We note that lysosomes are observed to overlap the nu-

cleus in both real images and synthesized images. This appears

to be an artifact of imaging (presence in the same optical sec-

tion of lysosomes above or below a section of nucleus) that is

carried over into the models (since lysosomes cannot normally

enter the nucleus). True three-dimensional models are

required to solve this problem, and we are currently pursuing

this direction. However, the 2D location models we have

described are likely to be useful for those cases where a model

is confined to 2D (e.g., for computational efficiency).

While our current models may be useful immediately,

there are two important additional characteristics needed to

build accurate cell simulations. The first is to build models

that specify the location of multiple proteins (and eventually

all proteins) in the same cell. Only a small number of proteins

can currently be visualized in live cells using fluorescence

microscopy. An important alternative is to use fixed cells and

obtain correlated distributions by repeated cycles of staining,

imaging and photobleaching (39). While this is thought to be

able to image up to 100 proteins in the same sample, it is unli-

kely that it can be extended to simultaneously measure tens of

thousands of proteins in the same cell (and of course it cannot

be applied to living cells). Thus, methods for combining infor-

mation from different cells are necessary, and generative mod-

els can play this role. Proteins can first be grouped into high-

resolution subcellular location families and then a generative

model can be built for each family. These can be combined to

synthesize cell models showing tens of thousands of proteins

under the assumption that all proteins in a family show

highly-correlated distributions.

The second necessary characteristic of future models is

the ability to represent changes in protein distribution over

time, on time scales from below a second to greater than a

year. The ability to directly acquire information on the dy-

Table 2. Classification of real images based on the model parametersa

TRUE CLASSIFICATION

OUTPUT OF CLASSIFIER

GIA GPP LYSO MIT. NUC. ENDO.

Gia 86 8 6 0 0 0

Gpp 6 80 10 2 2 0

Lyso. 2 6 84 4 0 4

Mit. 0 0 4 88 0 8

Nuc. 0 0 0 0 100 0

Endo. 0 0 2 10 0 88

aGenerative model parameters were estimated for individual images and used to train and test classifiers using 10-fold cross-valida-

tion. The average accuracy was 88%. Boldface numbers indicate the percentage of correctly classified images.

Figure 14. Description of the models as Bayesian networks. The network representing the models built in this paper is illustrated by figure

(a). More accurate but complicated models can be obtained by adding edges to the network (b).
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namics of protein distribution is a critical advantage of fluo-

rescence microscopy.

In this vein, we can consider ways of representing genera-

tive models and choosing their characteristics. The models

proposed in this paper can be put into a directed probabilistic

graphical model framework, which is also known as Bayesian

network (Fig. 14). The advantage of using a graphical model is

that we can tune the model structure in a more intuitive way.

In the graphical model, each node is a component of the

model and each edge is the correlation between the nodes. The

arrow means the direction of determination. So the procedure

of model design becomes adding or removing nodes or edges.

If we consider each component as a set of random variables,

then the graph becomes a Bayesian network. Therefore we can

use well-developed techniques for Bayesian networks to do

inference and interpretation.

The goal of building the generative models is to provide

an interface between location proteomics and systems biology,

so we have begun implementing generative models in our

Protein Subcellular Localization Image Database (PSLID,

http://pslid.cbi.cmu.edu). We have also done some prelimi-

nary work to convert the models into XML format, which we

hope to merge into standard cell modeling descriptions such

as SBML (40) and CELLML (41). This will make our models

easily transferable between programs. We expect shortly to

release software to permit training of models and synthesis of

images on a variety of platforms (I. Cao-Berg, T. Zhao, and

R.F. Murphy, in preparation). We anticipate a wide applicabil-

ity of these tools in systems biology studies, especially in simu-

lations of cell behavior that require detailed models for subcel-

lular location.
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