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� Abstract
The empirical characterization of nuclear shape distributions is an important unsolved
problem with many applications in biology and medicine. Numerous genetic diseases
and cancers have alterations in nuclear morphology, and methods for characterization
of morphology could aid in both diagnoses and fundamental understanding of these
disorders. Automated approaches have been used to measure features related to the size
and shape of the cell nucleus, and statistical analysis of these features has often been
performed assuming an underlying Euclidean (linear) vector space. We discuss the dif-
ficulties associated with the analysis of nuclear shape in light of the fact that shape
spaces are nonlinear, and demonstrate methods for characterizing nuclear shapes and
shape distributions based on spatial transformations that map one nucleus to another.
By combining large deformation metric mapping with multidimensional scaling we
offer a flexible approach for elucidating the intrinsic nonlinear degrees of freedom of a
distribution of nuclear shapes. More specifically, we demonstrate approaches for nu-
clear shape interpolation and computation of mean nuclear shape. We also provide a
method for estimating the number of free parameters that contribute to shape as well
as an approach for visualizing most representative shape variations within a distribu-
tion of nuclei. The proposed methodology can be completely automated, is independ-
ent of the dimensionality of the images, and can handle complex shapes. Results
obtained by analyzing two sets of images of HeLa cells are shown. In addition to identi-
fying the modes of variation in normal HeLa nuclei, the effects of lamin A/C on nuclear
morphology are quantitatively described. ' 2007 International Society for Analytical Cytology
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COMPUTATIONAL analysis of cellular and subcellular structures aims to provide

quantitative information (such as the measurement of physical quantities) that can

be used to generate and test hypotheses related to normal and pathological eukaryo-

tic cell characterization. Such studies have long been a major topic of biomedical

research (see, for example (1,2)) and advances in microscope image acquisition sys-

tems and sophisticated image processing algorithms over the past decade have estab-

lished computational analysis of cell images as a important component of cell biology

research (3–6). Amongst many other interesting topics, image-based analysis of nu-

clear morphometry is a key problem due to the important roles that the cell nucleus

plays in biology. Nuclear morphology, and associated changes, have been studied in

conjunction with cellular movements (7), cancer (8,9), Hutchinson-Gilford progeria

(10), as well as gene expression and protein synthesis (11), to name a few.

Both visual and computational approaches have been applied in characterizing

nuclear morphology. For example, nuclear morphology can be visually rated on an

objective scale of ‘‘normal’’ and ‘‘dysmorphic’’ (12) but this limits both reproducibil-

ity and the number of samples that can be tested. Alternatively, quantitative descrip-

tors of nuclear morphology can be computed from images. Since it is difficult to fully

control all physical and biological sources of variation in common experimental

setups (e.g., cell cycle phase, focal plane position) most studies are statistical in na-
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ture: quantitative nuclear shape and size information is ana-

lyzed for significant, broad trends. This information is then

analyzed in conjunction with different properties of cells or tis-

sues with the goal of elucidating important relationships and

increasing our understanding of fundamental biological con-

cepts. To date, the vast majority of nuclear morphology studies

have been based on the extraction of parameters related to

shape and size and statistical analysis of their respective means,

variation, and covariation (see (2,8,11,13–16) for examples).

While such approaches have produced useful results in distin-

guishing healthy and pathological tissues, as well as providing

useful representations of shape distributions, important recent

advances in the theory of shape statistics (17,18) could increase

the accuracy of the computations.

One of the key concepts arising from such theory is that

shape spaces are inherently nonlinear and standard formulae of-

ten used for computing sample means, variances, etc. need to be

modified to account for the nonlinearities. We use the following

example to illustrate this concept. We first construct a distribu-

tion of shapes based on a medial axis parametric representation

and show that the simple (Euclidean) average of medial axis

coordinates does not necessarily represent the correct mean.

Let a represent a real valued random variable uniformly

distributed in the closed interval [0,1/2]. A medial axis (a set

of 2D coordinates representing a curve on the plane) is con-

structed based on the random variable a as

yðsÞ ¼ s

sinð2psÞ

 !
; ð1Þ

with s [ [0,a]. The boundary of each object is constructed by

traveling a constant distance d in the normal direction from

the medial axis y(s). Part A of Figure 1 shows a sampling of

shapes created from such a model. Each shape is represented

by the medial axis as well as its boundary. Morphometric stu-

dies aim to recover information about the shape distribution

by extracting and analyzing information from tens, hundreds,

or thousands of images containing the shapes of interest. Fol-

lowing this approach, one could be tempted to simply extract

the medial axis model by fitting such a model to each shape.

Note that for the purposes of this demonstration we do not

consider algorithms for extracting medial axis representations,

but rather assume these are given. Let zk(s) represent the med-

ial axis extracted from the kth shape. Assuming that the

underlying geometry is a Euclidean vector space, an ‘‘average’’

medial axis is simply given by

�yðsÞ � 1=N
XN
k¼1

zkðsÞ

where N is the number of figures or shapes available. The Eu-

clidean average of the medial axis distribution defined in Eq.

(1) is shown in Figure 1. For comparison purposes, the known

mean shape (defined by the medial axis representation in Eq.

(1), with s [ [0,E{a}]) is also shown in Figure 1, part B. It is

clear that the average shape computed by assuming an Euclid-

ean vector space as the underlying geometry is incorrect; in

fact, it produces a shape which cannot be represented using

the model defined in (1). In portions where the medial axis is

approximately linear, both the Euclidean and the correct mean

are close to each other. In parts where the medial axis does not

closely approximate a straight line, however, the Euclidean av-

erage can produce large errors. This is due to the fact that

medial axis parameters are not elements of an Euclidean vec-

tor space and therefore standard formulae for computing

means, variances, covariances, etc., do not apply (19). In fact

it can be shown that the elements of medial axis representa-

tions belong to a nonlinear manifold (the Riemannian sym-

metric space) and standard statistical analysis methods such as

principal component analysis (PCA) have to be modified to

account for an appropriate notion of distance within the

manifold (19). A more detailed explanation of this particular

example is provided in the appendix together with the

description of an alternative method soon to be described.

The field of statistical shape analysis (17,18) has long pro-

vided important tools for medicine and biology. We mention

briefly a few of the major research directions in the area and

their potential applications to nuclear morphometry. The

landmark-based work pioneered by Kendall (20) and Bookstein

(21) can yield valuable results, but it is not directly applicable to

nuclei because corresponding landmarks between different

nuclei are difficult to ascertain (although recent advances may

circumvent such difficulties (22)). Shape analysis methods via

medial axis representations (23) is also popular, and recent

work by Fletcher et al. (19) has provided a mathematical basis

Figure 1. Simulated nuclear shapes demonstrating the nonlinear-
ity of shape distributions. A medial axis-based shape distribution

is shown on top (see text for details). The mean shape computed

through Euclidean averaging the medial axis parameters is shown

in conjunction with the known mean shape. Where the medial

axis is approximately linear, the Euclidean average approximates

the correct known mean shape well. Where the medial axis is not

linear, however, significant errors can arise. [Color figure can be

viewed in the online issue, which is available at www.interscience.

wiley.com.]
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for performing PCA based onmedial axes extracted from image

data. Medial axis representations, however, can be cumbersome

to extract, especially for complex shapes (shapes with numer-

ous ‘‘blobs’’ may require more than one medial axis) or for

three-dimensional shapes.

An attractive alternative for statistical analysis of shapes is

provided by the computational anatomy (CA) framework,

where the goal is to quantify shape differences by analyzing

the spatial transformations that map different elements of a

population (24–26). Here the definition of a shape space is

linked to the orbit of a template image (that is, the set of

images composed through deformations of a template image)

under smooth and invertible spatial transformations (dif-

feomorphisms). The framework can be extended to handle

unlabeled landmarks, contours, as well as dense imagery in

arbitrary dimensions and is therefore a viable candidate for

modeling distributions of nuclear morphology. Here we show

how tools derived from the CA framework can be used to

characterize important features of nuclear shape. More specifi-

cally, using the large deformation metric mapping (LDMM)

framework of Miller and coworkers (25,27), combined with

multidimensional scaling (MDS) (28), we offer methods for

performing interpolation between two nuclear shapes, meas-

uring ‘‘geodesic’’ distances between them, as well as computing

the most representative (mean) shape from a distribution of

nuclei. Although this methodology has been previously

applied to brain imaging studies (see, for example, (29,30)),

we believe the work described here is the first to investigate

the application of similar methods to nuclear morphology.

Diffeomorphic methods have been recently applied to register

nuclei in sets of either 2D or 3D images (41), but not as an

approach to characterize nuclear shape distributions. Issues

particular to nuclear morphology study, such as the lack of a

standardized orientation, and initialization, are discussed. In

addition, by combining classical MDS with distance measure-

ments originating from the LDMM framework we provide

methods for estimating the intrinsic dimension (number of

free parameters), as well as methods for visualizing the most

significant variations, of a nuclear shape distribution. The

combination of the LDMM-MDS frameworks constitutes a

novel approach for characterizing the nonlinear properties of

biological shape distributions and are in stark contrast to pre-

vious methods based on the analysis of deformation models

using PCA (see, for example, (31)).

METHODOLOGY AND RESULTS

Our goal is to measure important aspects of a given dis-

tribution of nuclear shapes automatically from a set of N two-

or three-dimensional images Ik(x), k 5 1, . . . , N, each con-

taining one nucleus from a fixed population, and with x

belonging to a fixed domain O (the fixed grid of pixels in the

images). Following the approach put forth by Grenander and

Miller (24,25) we aim to understand shape distribution-

related quantities by analyzing the spatial deformations that

map one (image) shape to another. More specifically, we study

the set of forms generated by diffeomorphisms (smooth in-

vertible mappings) g acting on different morphological exem-

plars Ik(g(x)). Provided we are able to find algorithms for

computing meaningful spatial transformations between differ-

ent anatomical exemplars, this approach avoids needing to

compute medial axis representations or other shape parame-

terizations, which can be difficult to do with complex shapes

in three dimensions, for example.

The spatial mapping g(x) between different morphologies

is computed via integration of an ordinary differential equation

dgðx;tÞ
dt

¼ vðgðx; tÞ; tÞ
gðx; 0Þ ¼ x

�
ð2Þ

with t [ [0,T], and integrating the velocity field v(g(x,t),t)

(computed as described below) over time. Following the

LDMM framework of Miller and coworkers (24,27,32) we

choose v to satisfy the following minimization problem

v ¼ arg min
vðx;tÞ

ZT
0

kvðx; tÞk2Vdt þ kInðxÞ � Imðgðx;TÞÞk2L2
0
@

1
A
ð3Þ

where kf kL2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
x2X

jf ðxÞj2dx
r

is the standard L2 norm for

square integrable functions on O, and kf kV is simply kLf kL2
with L being a differential operator described in detail below.

Intuitively, the minimization problem defined earlier can be

understood as trying to find the spatial transformation g, as

computed through Eqs. (2) and (3) that matches the images

Im and In in the sense of least squares, while at the same time

minimizing the amount of incremental ‘‘effort’’ (stretching,

bending, deformation, etc.) required to do so. As shown by

Miller et al. (32), the quantity

dðIm; InÞ ¼
ZT
0

kvðx; tÞkVdt ð4Þ

defines a true ‘‘geodesic’’ distance (length) on the manifold of

diffeomorphisms in that it satisfies all three required proper-

ties: it is positive, symmetric, and satisfies the triangle inequal-

ity. We note that the minimization problem (3) is computa-

tionally demanding. While algorithms for its minimization

based on Euler-Lagrange equations exist (see (27), for example)

our work below is based on the so-called fast ‘‘greedy algo-

rithm’’ proposed previously (33). In short, if operator L does not

differentiate in time, the space-time O 3 T domain can be dis-

cretized into a sequence of locally optimal velocities v and the

final solution is computed by integrating forward the solution.

The partial differential equation associated with the locally in-

time optimal solutions can be shown to be (24,27):

L#Lvðx; tkÞ þ bðgðx; tkÞÞ ¼ 0 ð5Þ

with L# representing the adjoint of L (conjugate transpose for

the case when L is a matrix) and b(g(x,tk)) representing the

first variation of an image force term F(Im, In, g(x,tk)) 5
kInðxÞ� Imðgðx;TÞÞk2L2 :
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bðgðx; tkÞÞ ¼ �½Imðgðx; tkÞÞ � InðxÞ�rImðgðx; tkÞÞ:

Thus vðx; tkÞ ¼ �ðL#LÞ�1
bðgðx; tkÞÞ represents a vector

pointing from the current shape configuration in the direction

of the target shape. Following Beg et al. (27) we choose L 5
aD2 1 c and as in Joshi et al. (30) we use the following for-

mula for updating the solution: g(x,tk 1 1)5 g(x1 ev(x,tk),tk),
with e representing the time step size. In our implementation

we have used the following parameter definitions: a 5 0.8,

c 5 0.05, e 5 0.025 with 100 iterations, yielding T 5 2.5. The

velocity field v is computed by Eq. (5) estimating the inverse

of L#L as in Beg et al. (27). Briefly, the solution of L#L g 5 f

is computed by taking the discrete Fourier transform of g and

f, denoted as f̂ and ĝ respectively. g can be computed by divid-

ing f̂ (with k5 (k1,k2)) by A(k)
2 where

AðkÞ ¼ cþ 2a
X2
i¼1

1� cosð2pDxikiÞ
Dx2i

with Dxi the pixel resolution in dimension i, and then taking

the inverse Fourier transforming the result of this division.

The image derivatives necessary for computing b(g(x,tk)) were

estimated using the centered finite difference formula (34).

In short, the framework above seeks to characterize dif-

ferences in shape by measuring the minimum amount of

incremental ‘‘effort’’ necessary to deform one shape into

another. The amount of effort is measured by Eq. (4) and it

provides a distance on the manifold generated by the orbit of

image data Ik(x), k 5 1, . . . , N with N being the number of

training images, under the spatial transformations computed

as described earlier.

Image Data Acquisition
In our experiments we use previously acquired images of

HeLa cell nuclei (total of 87 cell nuclei), obtained as described

(35), as well as HeLa cells expressing lamin modifications.

Lamin modifications in HeLa cells were studied by either over-

expression of lamin A, mutant lamin A proteins (such as pro-

gerin) or, in the case presented here, knockdown of lamin

A/C. More specifically, the lamin A/C gene lmna was knocked

down in HeLa cells using a pG-SUPER shRNA to lmna and a

GFP-reporter (36) transfected into cells using Lipofectamine

2000. Cells were fixed at different time points after transfec-

tion, permeabilized, blocked, and labeled with an antibody

against lamin A/C (Novocastra, Vector Laboratories, Burlin-

game, CA) and DNA was labeled with DAPI (Invitrogen,

Eugene, OR). Labeling of lamin A/C allowed a measure of het-

erogeneity of lamin labeling. Cells were imaged at 633 (1.4

NA) on an inverted fluorescence microscope with a CCD cam-

era (Leica, Bannockburn, IL). As a negative control of trans-

fection and exposure to shRNA, knockdown of luciferase (a

nonexistent gene in HeLa cells) using the same vector was

used. In total, we have used about 120 cell nuclei per time

point (three time points as shown below) in our lamin A/C

knockdown study.

Preprocessing and Initialization
As our primary concern in this preliminary work is in

characterizing the overall shape of cell nuclei, we use a binary

version (obtained via the thresholding method described in

(37)) of each image in conjunction with the framework

described earlier. In the case of lamin knockdown studies we

have used the DNA channel for initialization (as well as subse-

quent morphological analysis). Each set of images was manu-

ally inspected and nuclei for which the segmentation process

did not work well, due to imprecise boundaries, were dis-

carded.

We note that the deformation-based image matching fra-

mework mentioned earlier is not invariant to rigid body trans-

formations. Since the concept of shape is normally understood

to be the study of geometric forms modulo variations in posi-

tion, orientation, and size, we initialize the set of images by

minimizing the following functional

WðA1; . . . ;AN ; r1; . . . ; rN Þ

¼
XN�1

m¼1

XN
n¼mþ1

Z
X

jImðAmx þ rmÞ � InðAnx þ rnÞj2dx ð6Þ

with respect to matrices Am (each parameterized by rotation

and isotropic scaling) and translation vectors rm. The minimi-

zation of such functional is computationally expensive and

therefore we resort to using the following approximation.

Each binarized image is first scaled so that its foreground

(portion that defines the nucleus) has the same area. The

translation vectors are computed simply by translating the

center of mass of the object to the center of the field of view of

each image. All images are then rotated to have the same

orientation through a principal axis (Hotteling) transform.

Finally, each image is then ‘‘flipped’’ left to right, and up and

down, simply by reversing the coordinates of its pixel values,

until the functional in (6) is minimized. Figure 2 (left portion)

shows a few sample images taken from the normal HeLa cell

nuclei population after initialization. We note that although

the images used here are binary and two-dimensional, the fra-

mework we use can easily accommodate grayscale three-

dimensional images (at the cost of an increase in computa-

tional complexity).

Figure 2. Left panel: sample images of normal HeLa cell nuclei
after initialization. Here the images were normalized to account

for variations in overall size, orientation, as well as for coordinate

reversals (image flips). Right panel: Mean shape computed with

LDMM-based algorithm (see text for details).
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Figure 3. Large deformation metric mapping demonstration. The
image on the far left is deformed so as to match the image on the

top right while at the same time providing a metric distance

between the two shapes.

Figure 4. Sample images, after initialization, of nuclear shape
morphology in HeLa cells after knockdown of lamin A/C (see text

for details).

AMatching Example
The deformation-based image analysis framework

described earlier can be more easily understood through visual

analysis of an example deformation between two nuclear

shapes. An example is provided in Figure 3, where the image

of one nucleus is deformed so as to match the image of

another. Several intermediary images are shown as the frame-

work seeks to match the image on the far left, to the image on

the top right. The example also serves to demonstrate that the

framework can be used to perform shape interpolation, while

at the same time defining a distance (shown at the bottom of

each figure) between shapes.

Mean Nuclear Shape
The ability to compute moments from sample data is

fundamental for understanding statistical distributions as a

large class of distributions can be expanded as a function of its

moments (38). For unimodal distributions, the first moment

(mean) is one of the most important parameters describing a

sample population. In nuclear morphometry applications,

mean shapes can be used as templates, on which comparisons

between different populations (healthy or diseased) can be

based, or teaching tools (39,40), as well as in generative mod-

els that aim to summarize the information contained in a

given population of cells (15,16).

As explained earlier, linear averaging cannot be directly

applied to image data, nor to parametric descriptions of image

data, in an effort to produce a mean shape whenever these do

not belong to an Euclidean space. We follow the approach

described in Joshi et al. (30) and define the mean shape as the

solution to the following minimization problem:

fg�k ;�Ig ¼ argmin
S;gk

XN
k¼1

FðIk; S; gkÞ þ
ZT
0

kLvkðx; tÞk2dt ð7Þ

with SðxÞ ¼ 1=N
PN

K¼1 Ikðgkðx;TÞÞ and subject to

gkðx;TÞ ¼
ZT
0

vkðgðx; tÞ; tÞdt :

A more detailed explanation of the motivation behind the

minimization approach defined in (7) is shown in the appen-

dix. We again use the greedy algorithm discussed earlier in our

minimization of (7). In essence, the algorithm described ear-

lier aims to estimate a mean shape by finding the set of trans-

formations that align all images in the set, simultaneously,

with minimum effort, where the notion of effort is provided

by the operator L and the distance function (4). The resulting

mean nuclear structure for the normal HeLa cell population

described earlier is shown on the right side of Figure 2. As

shown here, perhaps contrary to common intuition, the mean

shape is not strictly symmetric. A slight concavity on the left

of the shape exists while the top of the shape seems to be more

pointed than the bottom portion.

The mean shape can be used to establish broad trends

and differences between cell populations. Here, we use this

concept to examine the effects of lamin knockdown on nuclear

morphology. Several studies have shown a dysmorphic shape

of nuclei related to loss of lamins (9). However, previous stu-

dies were limited in determining the presence or absence of

dysmorphic ‘‘blebs’’ in a given population. Using the frame-

work discussed earlier, we are able to obtain more specific

quantitative information about the interdependency of nuclear

morphology and lamin knockdown concentration by compar-

ing both degree of knockdown (measured by lamin A anti-

body) and time after expression. Sample images (after initiali-

zation) of extracted cell nuclei are shown in Figure 4 and the

results of mean shape computations are shown in Figure 5,

where synthetic images combining the mean shape and lamin

A/C concentration information are plotted on a time axis. In

this case the intensity value (in arbitrary units) of each coordi-

nate in each image is directly proportional to the average

lamin concentration at that location, within the given time

point. The evidence supports that, on average, lower lamin

concentration is associated with an increase in bending (con-

cavity) of the cell nucleus. In addition, a slight increase in

overall area (in this experiment size was not accounted for in

the initialization procedure as it was a parameter of interest) is

also associated with a decrease in lamin A/C concentration.

Nonlinear Dimension Reduction
The LDMM framework discussed earlier can be used in

conjunction with the classical MDS technique for the purposes
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of detecting the intrinsic degrees of freedom of a shape distri-

bution dataset. Given a dataset of images Ik(x), k 5 1, . . . , N,
each containing one nucleus as described earlier (in the fol-

lowing computations we have used the set of images originat-

ing from normal HeLa cells), define D to be a matrix of dis-

tances between the images in the dataset: i.e. Dm,n 5 d2(Im,In),

with d defined in Eq. (4). Our goal in using MDS is to find a

set of coordinates wk, k 5 1, . . . , N, in Euclidean space that

best preserves the notion of distance imparted by the LDMM

framework described earlier. As described in (28), this task

can be achieved by choosing the top eigenvalues and corre-

sponding eigenvectors of G 5 20.5(Id 2 uuT) D(Id 2 uuT),

with uT ¼ 1=
ffiffiffiffi
N

p ð1; . . . ; 1Þ, and Id representing the identity

matrix. Let k1, k2, . . . , kN, represent the sequence of eigenvalues
of G, organized in descending magnitude, and with correspond-

ing eigenvectors b1,b2, . . .,bN. Then the ith component of vector

wk is equal to
ffiffiffiffi
ki

p
bki . The true dimensionality of the data (the

number of free parameters responsible for the variation in

shape) can be estimated from the decrease in error (residual

variance) between D and ~D; where ~Dm;n ¼ kwm � wnk, as a

function of the number of components used in approximating

each vector wk is increased. As in (42), we define the residual

variance to be 1 2 R2(~D,D), with R denoting the standard cor-

relation coefficient between the entries of both matrices.

As shown in Figure 6, the intrinsic dimensionality of the

nuclear shape distribution (for the set of normal HeLa cells)

seems to be close to three parameters. For comparison, we

also plot the residual variance obtained by MDS on a standard

Euclidean distance matrix where the distance between two

images is simply given by the square root of the sum of the

squared differences of their intensity values. In this case the

outputs of MDS are equivalent to those of standard PCA (43)

on the preprocessed set of nuclear images. Note that in both

cases, the error decreases. However, the PCA (E-MDS) error is

noticeably higher and it does not imply any particular intrin-

sic dimension (number of free parameters) for the dataset.

This is to be expected since PCA simply finds the linear sub-

space that minimizes the error between the reconstruction and

the data, while the data may lie in a nonlinear submanifold.

In addition to the number of free parameters, the com-

bined LDMM and MDS framework described earlier can be

used as a tool for visualizing the most representative modes of

shape variation in a distribution of nuclei. Figure 7 contains a

two-dimensional representation of the dataset computed

through PCA (or MDS on Euclidean distances) and LDMM-

MDS, where only the first two components of vectors wk of

each image are plotted in each case. For both point distribu-

tions the points labeled with diamonds correspond to the

images on the left, stacked vertically. These indicate that the

vertical dimension (the second coefficient in both E-MDS and

LDMM-MDS) is associated with differences in concavity in

the shape distribution. The images corresponding to the

points labeled with black squares are shown in a horizontal

strip at the bottom of the figure. The variation in these

appears to be related to elongation of the nuclei, which in

the LDMM-MDS coordinates corresponds to variations in the

first coordinate, while in PCA (E-MDS) coordinates corre-

sponds to variations in both the first and second coordinates

of wk. In this case, a low-dimensional representation com-

puted with LDMM-MDS appears to be more effective for elu-

cidating modes of shape variations since it is able to differenti-

ate them into separate coordinates.

Finally, we note that the low-dimensional representation

of the image data provided by the combined LDMM-MDS

framework discussed earlier can be used to visualize and

explore by inspection extreme cases of shapes and images in a

distribution. Again we note the difference in extreme shapes

provided by E-MDS and LDMM-MDS. While the extreme in

Figure 5. Relationship between nuclear morphology and lamin
concentration. Each image in the time line represents the mean

shape. The intensity value of each pixel and each image repre-

sents the average A/C lamin concentration at that location, in arbi-

trary units. As time progresses, lamin concentration diminishes

and overall bending of the nuclei increase. A slight increase in

overall area is also associated with a decrease in lamin concentra-

tion. [Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]

Figure 6. Residual variance (see text for definition) between origi-
nal and reconstructed images using both Euclidean distance MDS

(E-MDS) and LDMM-MDS. Both curves demonstrate that by

including more components in the dimension reduction opera-

tion, the residual variance can be decreased. However, for any

fixed number of components, the residual variance for standard

E-MDS is always larger than that of LDMM-MDS. In addition, the

LDMM-MDS framework suggests that the number of free parame-

ters responsible for variation in the shape distribution is approxi-

mately three, while E-MDS suggests a larger number of free pa-

rameters is present in the distribution. [Color figure can be viewed

in the online issue, which is available at www.interscience.wiley.

com.]
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the horizontal coordinate in both these methods coincides,

this is not true of the second (vertical) dimension: LDMM-

MDS identifies a concave shape in its extreme top, while E-

MDS identifies a symmetric one.

DISCUSSION AND CONCLUSIONS

The LDMM framework, together with the shape aver-

aging algorithm described in (30), can be used to compute im-

portant features of distributions of nuclear shapes such as

means and variances. We note a couple of important consid-

erations to keep in mind when interpreting the results of nu-

clear shape calculations. First, since nuclei do not have a stan-

dardized coordinate system, the position and orientation of

the nucleus within the computed mean image is arbitrary and

the result shown in Figures 4 and 5 is dependent on the way

we have chosen to implement the initialization procedure.

Unlike image-based analysis of brain shape, where a standar-

dized coordinate system is easily established through anatomi-

cal considerations, the initialization procedure plays a crucial

role in studying nuclear shape. The initialization procedure we

have chosen aims at removing all differences between the

shapes represented in the images by searching for the rigid

body, isotropic scaling, and coordinate reversals (image flips)

that minimize the sum of squared errors between each shape,

thus removing the effect of such transformations on subse-

quent analysis. We note that these are common considerations

in shape analysis methods (17,18).

Although nuclear shapes are usually assumed to have a

symmetric shape configuration, the resulting mean shape

shown in Figure 2 (right side) is asymmetric. In addition, the

means computed from the lamin A/C knockdown studies are

also asymmetric, with the level of asymmetry being dependent

on overall lamin concentration. We believe this will nearly

always be the case for empirical estimates of the mean nuclear

shape, as defined by differences in form modulo rigid body

transformations and isotropic scaling, due to the initialization

step described earlier. Lastly, although we have used the com-

putationally efficient algorithm proposed by Joshi et al. (30)

for computing means, we note alternative algorithms are avail-

able (see for example (29)), as shape averaging continues to be

an active area of biomedical image processing research.

As we have shown earlier, the combination of MDS with

distances computed from the LDMM technique can provide a

powerful framework for analyzing nuclear morphology. By

considering the error between the MDS reconstruction of the

geodesic distances produced with LDMM, one is able to

estimate the intrinsic dimensionality, or the number of free

parameters, that contribute to the shape variations within a

dataset. In addition, by mapping each image to a low-dimen-

sional Cartesian coordinate system, one is also able to easily

visualize the most significant differences between shapes in a

distribution of nuclei. Our analysis of normal HeLa cell nuclei

indicates that, although each image contained 196 3 196 pixel

intensity values, approximately three parameters can account

for a large amount of shape variations. The first two primary

modes of shape variation were determined to be differences in

elongation and differences in bending (concavity).

We note that the LDMM-MDS technique is in sharp con-

trast with previous attempts to characterize morphological

variations in biological datasets (see (31) as well as (44–46)),

where PCA analysis on the deformation fields that map each

exemplar shape, or parameters that describe the shapes, was

performed. Although PCA has been successfully used to infer

important information related to cell shape (44–46) com-

parisons using PCA performed directly on preprocessed (initi-

alized as in the description above) is not as informative as

LDMM-MDS since, by design, it is optimal for extracting

structure from linear subspaces. As we have demonstrated

earlier, shape spaces can contain significant nonlinearities. We

further clarify that our purpose in using such a framework is

not only to overcome the difficulties associated with extrac-

tion of parametric descriptions of shape features such as

medial axis, but also to introduce methods (through the com-

bination of the LDMM and MDS techniques) for estimating

quantities based on the nonlinear geometric space to which

the data belong. For example, even though medial axis para-

meters can be readily extracted from the shapes in Figure 1 (or

Fig. 2), their treatment as vectors embedded in a linear vector

space is not appropriate (19). The LDMM-MDS technique we

described earlier is designed to handle the nonlinearities pres-

ent in the data.

Figure 7. Plot of the first two components of the low-dimensional
representation of the image data computed both with Euclidean

distance MDS (E-MDS) as well as LDMM-MDS. Each small circle

(red online) corresponds to one image in the dataset. Images

associated with specific data points are shown on the left (dia-

monds) or across the bottom (squares). Each dark square corre-

sponds, in order, to each image shown in the horizontal bottom

series of images. Likewise, each light triangle corresponds to

each image stacked vertically. While LDMM-MDS separates differ-

ent modes of shape variation (bending and elongation) into sepa-

rate coordinates, E-MDS seems to mix them. See text for more

details. [Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]
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The reader may note that the LDMM framework above

depends on several constants a, c, and e and the choice of

these is based on prior work (see for example, (27)) as well as

experimentation with the data at hand. More specifically, for

the application of nuclear shape analysis, sample images are

chosen as test images for the algorithms to match. Step sizes e,
and the strength of a, c are chosen, through trial and error, until
the algorithm is able to match these reliably. The choice of these

parameters, at this point in our research, is not related to any

biophysical properties of HeLa cell nuclei as our goal here is not

to infer information about nuclear shape dynamics, but the sta-

tistical characterization of shapes in a distribution of nuclei.

Comparisons between different distributions of nuclei are

also possible under the framework described earlier. The mean

shape was used for establishing relationships between mor-

phology and lamin concentration. As the effects on single cell

measurements may not be representative due to uncontrolled

sources of variation that influence typical experiments, an av-

erage trend can be used to establish the connections between

morphology and lamin concentration. Our experiments pro-

vide evidence supporting an average increase in bending and

concavity associated with an overall decrease in lamin concen-

tration. In the future we plan to study the relationship

between different distributions by comparing the number of

free parameters associated with each, as well as the most repre-

sentative modes of shape variation. These could provide im-

portant insight into the effects of different phenomena on nu-

clear morphology.

We also envision methods for performing inference based

on the nonlinear low-dimensional representation of the image

data described earlier. Modeling of the low-dimensional repre-

sentation of the shape distribution can be performed by Par-

zen windowing approximations, for example. Thus the infor-

mation content can potentially be summarized by a few exem-

plar images and weighting coefficients that approximate the

low-dimensional point distribution obtained by LDMM-MDS

(such as the one displayed in Fig. 7). The shape interpolation

framework discussed earlier can be used to estimate the image

associated with any coordinate in the low-dimensional Carte-

sian coordinate system, so long as it is a convex combination

of points present in the distribution. These techniques can be

used for summarizing the important features of nuclear distri-

butions in the context of generative models (15,16).

Finally we note that our use of binarized images is not a

requirement and in fact the algorithms described earlier are

prepared to handle more complex grayscale images without

modification. The segmentation and binarization steps may

contain inaccuracies that if accentuated, may propagate

through to the image registration process. These may be

avoided by choosing not to segment the images prior to regis-

tration. In addition, more complex structural information can

be obtained by including chromatin information and we plan

to investigate including such information in our analysis.
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APPENDIX

The goal of this appendix is to facilitate a more intuitive

understanding of the concepts and computations described

earlier. More specifically, we analyze the example shown in

Figure 1 more closely and contrast the linear averaging and

LDMM frameworks discussed earlier.

We begin by analyzing the example provided in Figure 1

in more detail, by focusing exclusively on the average of two

medial axis representations taken from the shape distribution

described in the introductory paragraphs and displayed in Fig-

ure 1. The top portion of Figure A1 displays two sample

shapes composed of their medial axis and border. Note that

the two shapes are superimposed, and the only difference

between them is their termination point (the smaller shape

appears with a grid texture). An Euclidean (linear) average

between these shapes is defined as the mid point of the

straight line connecting two corresponding points (see top

portion of Fig. A1). Note, however, that the mid point of such

straight line is not a point that belongs to the set of shapes in

our distribution. The end result of such averaging operation is

shown at the bottom of Figure A1. For comparison purposes,

the correct mean (see introductory paragraphs) is overlaid in

this figure as well.

In contrast, let us now consider the nonlinear framework

provided by the large deformation metric mapping (LDMM)

framework. Binarized versions of the two shapes displayed in

Figure A1 are shown in Figure A2 (top row). Image 1 can then

be deformed so as to match image 2 according to the LDMM

framework discussed earlier. Briefly, the greedy algorithm

works by incrementally deforming image 1 with the deforma-

tion field g(x,tk11) 5 g(x 1 ev(x,tk),tk), with e representing the
time step size, and velocity field v(x,tk) computed according to

the differential Eq. (5). The arrows in image 1 represent the

direction of deformation in the first iteration. The process is

repeated recursively until the two shapes match.

Given a geodesic distance, defined in Eq. (4), the mean of

a set of shapes (in this case two shapes represented in the

images shown in Fig. A2) can be defined as

�I ¼ argmin
s

1

N

XN¼2

k¼1

d2ðSk ; IÞ ðA1Þ

where d is given in Eq. (4). For the case of the two images

shown in Figures A1 and A2, this can be accomplished by

matching image one to image two via the LDMM framework

discussed earlier, yielding the geodesic distance d(S1,S2)

Figure A1. Detailed explanation of medial axis-based linear aver-
aging computation. The mid-point distance between correspond-

ing medial axis coordinates is not related to the nonlinear struc-

ture of the shapes. As a consequence, medial axis linear averages

do not produce a correct mean estimate. [Color figure can be

viewed in the online issue, which is available at www.interscience.

wiley.com.]

Figure A2. Schematic description of the greedy LDMM and shape

averaging algorithms. Given two shapes (top row) LDMM

matches image 1 by incrementally deforming it so as to match the

two images. The forces guiding the deformation are composed of

the difference image, the gradient of image 1, as well a smoothing

operation defined by differential operator L described in the text.
Gray arrows indicate the direction of the incremental deforma-

tion. The distance between the original image and the deformed

image can be computed at each iteration. The ‘‘average’’ shape is

computed by choosing the image associated with half the dis-

tance between the two images. [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]
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between the images. The bottom left image in Figure A2 shows

the border of the deformed image 1, and assosciated ‘‘hypo-

thetical’’ distances d1, d2, d3, and d4. The mean image can then

be computed by deforming S1 so that it goes half way the dis-

tance d(S1,S2). More precisely, the velocity field v(x;t), t [
[0,T], computed from matching images S1 and S2 can then be

used to generate �IðxÞ ¼ S1ðgðxÞÞ where g(x) is deformation

field for which Eq. (A1) is minimized by integrating

gðxÞ ¼
Zn
0

vðgðx; tÞ; tÞdt

and choosing n such that

dðS1; S2Þ
2

¼
Zn
0

kvðx; tÞkVdt :

The result is shown on the bottom right panel of Figure

A2. The correct mean is overlaid on the same image for com-

parison purposes. As shown here, the LDMM framework is ca-

pable of generating a better approximation to the mean image

by introducing a geodesic distance measure.

We note that the greedy algorithm discussed earlier

should be interpreted as approximate solution of Eq. (3) and

the geodesic distances obtained from its application may not

be optimal (27). Moreover, the image alignment process

described earlier is not invariant to an exchange in the order

of the images. However, the mean shape computational algo-

rithm described in the methods section earlier, summarized in

Eq. (7) and discussed in detail in (30), is symmetric (invariant

with respect to an exchange in the order of the images), and is

designed to approximate this solution for a large number of

images, in a computationally efficient manner.
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