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ABSTRACT
We describe a new approach for elucidating the nonlinear degrees
of freedom in a distribution of shapes depicted in digital images.
By combining a deformation-based method for measuring distances
between two shape configurations together with multidimensional
scaling, a method for determining the number of degrees of freedom
in a shape distribution is described. In addition, a method for visu-
alizing the most representative modes of variation (underlying shape
parameterization) in a nuclei shape distribution is also presented.
The novel approach takes into account the nonlinear nature of shape
manifolds and is related to the ISOMAP algorithm. We apply the
method to the task of analyzing the shape distribution of HeLa cell
nuclei and conclude that approximately three parameters are respon-
sible for their shape variation. Excluding differences in size, transla-
tion, and orientation, these are: elongation, bending (concavity), and
shifts in mass distribution. In addition, results show that, contrary to
common intuition, the most likely nuclear shape configuration is not
symmetric.

Index Terms— Nuclear shape analysis, nonlinear, dimension
reduction, image registration.

1. INTRODUCTION

Under the rubric of Computational Anatomy [1], image-based stud-
ies of biological forms and structures have been vastly applied to
characterize representative organ anatomies across states (normal vs.
diseased), ages, populations, etc., from high resolution medical im-
age data. Computational algorithms for extracting quantitative mor-
phological information have become popular since these can often
be completely automated, and have become capable of providing de-
tailed, high resolution mappings of, and relationships between, dif-
ferent organs and biological structures.

Previous works in computational anatomy have been almost ex-
clusively applied to characterizing morphology of human organs at
scales accessible to standard medical imaging modalities such as
computed tomography (CT) and magnetic resonance imaging (MR)
with the brain and heart receiving most of the focus. Guimond [2] et
al propose an iterative, Euclidean averaging-based approach for es-
timating a brain template or atlas from a collection of images, while
Joshi et al [3] and Avants et al [4], following the framework put forth
by Grenander and Miller [1], propose atlas estimation algorithms
based on the minimization of nonlinear, geodesic distances, on the
manifold of diffeomorphisms relating anatomical instances depicted
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in images. Related developments include the works of Ashburner et
al [5] who use multivariate analysis of covariance, and Rueckert et
al [6] who use principal component analysis (PCA), of deformation
fields that warp two images into alignment so as to elucidate princi-
pal modes of deformation in a population of brain images. Cootes
et al. [7] also promote the use of PCA to discern modes of variation
from point landmark extracted from image data. Finally, due to the
fact that shape spaces are rarely linear, Vaillant et al [8] propose a
method for performing nonlinear statistical analysis on the space of
diffeomorphisms through PCA on initial momentum equations from
geodesic flows. An alternative approach is provided by Fletcher et
al. [9] who propose a method for principal geodesic analysis for the
study of nonlinear statistics of shape. We note that the above is a
sample of representative works in image-based morphometry for bi-
ology and medicine. A more complete overview of previous works
is provided by Miller [10].

Here we propose a novel method for recovering the underly-
ing parameterization of a shape distribution by combining the large
deformation diffeomorphic metric mapping (LDDMM) framework
described by Grenander and Miller [1] and the multidimensional
scaling (MDS) technique. The significant modes of variation in a
population of shapes are determined by first estimating the geodesic
distances between morphological exemplars through a greedy algo-
rithm and then applying MDS to the distance matrix obtained. The
number of degrees of freedom in the distribution is estimated from
the MDS reconstruction error, while the actual modes themselves are
displayed as point distributions on a cartesian grid.

We apply the methodology to characterize normal nuclear shape
variation in HeLa cells. The precise characterization of nuclear shape
distributions is an important, unsolved problem, with numerous ap-
plications to medicine and biology. In a broad sense, nuclei can be
viewed as the ”brain” of cells and nuclear morphology, and associ-
ated changes, have been studied in conjunction with cellular move-
ments, numerous pathologies [11, 12], as well as gene expression
and protein synthesis [13] to name a few possible applications of our
work. We conclude that approximately three modes are required to
accurately describe the variation of nuclear shape in the cell popula-
tion we study: elongation, bending, and shifts in mass distribution.
In addition, we compute an approximate mean nuclear shape and
show that, contrary to common intuition, it is not symmetric.

The remaining of this paper is organized as follows. In the next
section we briefly describe the imaging and preprocessing set up, as
well as the greedy LDMM distance measurement, and MDS analy-
sis. Results using a population of HeLa cell nuclei are then shown,
followed by a brief summary and conclusion section.
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2. METHODS

2.1. Acquisition, pre-processing and initialization

In our experiments we have used previously acquired images of HeLa
cell nuclei (a total of N = 82 images two dimensional images), ob-
tained as described by Boland and Murphy [14]. As our concern
in this work is in characterizing the overall shape of cell nuclei, we
use a binary version of each image, obtained via the method de-
scribed in [15], in subsequent analysis. As the study of shapes is
normally regarded as understanding variation in form modulo varia-
tions in overall orientation, position, and size, given a set of binary
images Ik, k = 1, · · · , N , each containing one nucleus, we initial-
ize each image by finding the spatial transformations that minimize
the following functional:

N−1X
m=1

NX
n=m+1

|Im(Amx + rm)− In(Anx + rn)|2 (1)

where Am are affine transformations containing rotation and isotropic
scaling, and rm are translation vectors. The minimization of (1) is
computationally intensive and therefore we resort to the following
approximation. Each binary image is first scaled so that its fore-
ground has the same total area. The translation vectors are computed
simply by translating the center of mass of the object to the center
of the field of view of each image. All images are then rotated to
have the same orientation using a principal axis transform. Finally,
each image is then ”flipped” left to right, and up and down, simply
by reversing coordinates, until functional (1) is minimized.

2.2. Large deformation diffeomorphic metric mapping

Following the approach put forth by Grenander and Miller [1] we
aim to understand shape distribution-related quantities by analyz-
ing the spatial deformations that map one shape (image) to another.
More specifically, we study the set of forms generated by the group
of diffeomorphisms (smooth invertible mappings) g acting on a tem-
plate image I(g(x)), thus generating a morphological ”orbit” or
shape manifold. The diffeomorphism mapping the coordinate sets
Ω of two images I0 and I1 is computed as the end point (at time T )
of a flow associated to a smooth time- dependent vector field v:

∂g(x; t)

∂t
= v (g(x; t); t)

with g(x, 0) = x, and v chosen so as to minimize the following
geodesic length definition

Z T

0

‖Lv(x; t)‖dt (2)

subject to I0(g(x; T )) = I1(x). In (2) L denotes a linear differ-
ential operator (in this work L = α∇2 + γI , with I denoting the
identity matrix in two dimensions) and ‖ · ‖ the standard L2 norm
for vector fields on Ω. The end point of the differential equation can
be guaranteed to be diffeomorphism by ensuring a sufficient amount
of smoothnes on the vector fields v [16]. The infimum (over all
possible v) of equation (2) defines a metric (a geodesic distance) on
the group of diffeomorphisms generating the morphological orbit [1]
(shape manifold).

The problem stated above is solved using the minimum energy
template estimation approach:

Fig. 1. Residual variance of distance reconstruction as a function
of the number of dimension (components) in the reconstruction for
LDDMM-MDS, ISOMAP, and EMDS).

Z T

0

‖Lv(x; t)‖2dt +

Z
Ω

|I0(g(x, T ))− I1(x)|2dx. (3)

The Euler-Lagrange equations for the template estimation problem
above have been derived [17]. In this work, however, we use the
computationally more efficient locally-in-time optimal ”greedy” al-
gorithm described in [1]. Briefly, the final transformation is com-
puted by assuming piecewise constant velocity fields, quantized in
time increments�t, tk = k�t, k = 0, · · · , K. The locally optimal
velocity fields satisfy [1]

L∗Lvt + bt = 0, (4)

with bt(x) = −(I0(g(x; t) − I1(x))∇I0(g(x; t)) and L∗ denoting
the adjoint of operator L. Following Joshi et al. [3] the deforma-
tion field is updated via g(x; k + 1) = g(x + εv(x, k), k) while
the inverse of L∗L was computed with the aid of the Fast Fourier
Transform (FFT) as described in [17]. We also use the symmetric,
inverse consistent version of the problem stated in equation (3), de-
scribed in [3, 4]. Briefly, instead of matching image I0 to I1 via
update equations described above, both images are warped simulta-
neously to each other, via similar update equations (see [3, 4] for
more details).

2.3. Multidimensional scaling

Given a set of such multidimensional points (morphological exem-
plars), and their pairwise distances computed using the LDDMM
framework discussed above, multidimensional scaling (MDS) can
be use to finding a low dimensional ”Euclidean” embedding that
preserves interpoint distances[18], yielding an isometric feature map
(see also [19]). Let Dm,n = d2(Im, In), with d(Im, In) represent-
ing the distance defined by the infimum of the path integral (equation
(2) ) generating the spatial transformation g(x, T ) warping images
Im, In into alignment. The goal in MDS is to find a set of coor-
dinates wk, k = 1, · · · , N in a low dimensional Euclidean space
that best preserves the notion of distance imparted by the LDDMM
framework. This task can be achieved by choosing the top eigenval-
ues and corresponding eigenvectors of the matrix G = −0.5(Id −
uuT )D(Id− uuT ), with uT = 1/

√
N(1, · · · , 1), and Id represent-

ing the identity matrix. Let λ1, · · · , λN represent the eigenvalues of
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Fig. 2. Two dimensional representation of shape manifold computed
using LDDMM-MDS. Each circle represents one image. The points
marked with squares and triangles represent two different deforma-
tion modes displayed in Figure 3. An approximate average image
(see text for definition) is also shown.

G, arranged in decreasing order of magnitude, and with correspond-

ing eigenvectors g1, · · · , gN . The ith component of vector wk is
given by

√
λig

k
i .

3. RESULTS

3.1. Dimension estimation

Given a set of M -dimensional vectors wk (constructed from the first
M dimensions of each wk), an approximation D̃ = ‖wm−wn‖2 of
the LDDMM-based distance matrix D described above can be com-
puted. As done in [19], the intrinsic dimensionality of the data (num-
ber of free articulation parameters) is estimated by looking for the
”elbows” at which the residual variance (defined to be 1−R2(D̃, D),
with R denoting the correlation coefficient between the entries of
both matrices) ceases to decrease significantly with added dimen-
sions (increase in the value of M ) in the reconstruction of D̃. Figure
1 displays the residual variance as a function of the number of com-
ponents (dimensions) used in the distance matrix reconstruction D̃.
For comparison purposes, the residual variances for Euclidean MDS
(EMDS), MDS applied on the Euclidean pairwise distances between
the binary images, as well as the ISOMAP algorithm [19] (the num-
ber of neighbors in the graph construction phase in this case was
K = 8) are included. In all cases, the residual variance decreases
as the number of dimension increases. Note that the reconstruction
residual variance is worst for EMDS (analogous to PCA in this case
[18]). EMDS also estimates a much larger intrinsic dimensionality
for the data. Finally, although LDDMM-MDS and ISOMAP seem
to estimate the same intrinsic dimensionality for the data (three pa-

Fig. 3. First three principal modes of deformation (one per row)
computed through the LDDMM-MDS framework. In the first mode,
each image corresponds to one square shown in Figure 2, in order,
from left to right. In the second mode, each image corresponds to
one triangle, organized so that the left most image corresponds to
the first triangle from the bottom, the second image to the second
triangle from the bottom and so on.

rameters), LDDMM-MDS reconstructions contain the least residual
variance.

3.2. Deformation modes

A two dimensional projection (the first two components for each
vector wk, k = 1, · · · , N , and N being the number of images) of
the (nonlinear) degrees of freedom responsible for the variations in
shape is shown in Figure 2. Each small circle corresponds to one
image. The images corresponding to the dark squares (variation in
the first dimension) are shown in the top row of Figure 3 while the
images corresponding to the points marked with triangles (variation
along the second dimension) are shown in the second row of Figure
3. The variations along the third dimension of vectors wk are shown
in Figure 3, but omitted from Figure 2 for brevity. See figure cap-
tions for more details. The first three modes of deformation clearly
correspond to, from most to least significant: elongation, bending,
and shifts (asymmetry) in mass distribution.

3.3. Approximate mean

A Frechet mean shape can also be approximated from the LDDMM-
based distance matrix D as

Ī = arg min
Ik

1

N

NX
i=1,i�=k

D2
k,i. (5)

The result is displayed in Figure 2.

4. SUMMARY AND CONCLUSIONS

We have proposed a nonlinear method for characterizing the under-
lying parameterization in a distribution of shapes. The algorithm
proposed relies on a combination of the LDDMM and MDS meth-
ods, and is related to the ISOMAP algorithm [19]. As such, it relies
on similar assumptions to the ISOMAP algorithm. Most notably, it
is assumed that the set of articulation parameters (elongation, bend-
ing, etc.) is convex [19]. This assumption could be overly restrictive
for some interesting image articulation experiments [20]. Our algo-
rithm, however, does not rely on a nearest neighbor map for com-
puting the pairwise distances, but rather on distances induced on the
space of diffeomorphisms connecting two morphological structures.
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As such, the method is expected to be more precise, and less depen-
dent on the amount of data available. Experimental results indicate
that, even though they both estimate the same number of independent
degrees of freedom in this case, LDDMM-MDS produces a lower
residual variance reconstruction than ISOMAP.

We also note that the greedy algorithm used in computing geodesic
distances is not optimal in the sense that it may produce erroneous
(longer) distances. More precise geodesic distances may be com-
puted using the Euler-Lagrange equations associated with the tem-
plate estimation problem stated in equation (3), albeit at an increase
in computational complexity.

The proposed methodology was applied to the analysis of nuclei
in HeLa cell microscopic images. With exception of our own prior
work [21], we believe the work described here is the first to inves-
tigate the application of similar methods to nuclear shape analysis.
Registration methods have been recently applied to register images
of nuclei [22, 23], but not as an approach to characterize nuclear
shape distributions. In summary, the nonlinear analysis of HeLa cell
nuclei was able to conclude that, even though each input image con-
tained 196×196 pixels, approximately three parameters are respon-
sible for the variations observed in the dataset: elongation, bending,
and shifts in mass distribution. In addition, it was shown that the ap-
proximate mean shape is not strictly symmetric (even though the set
of images contained many nearly symmetric shapes). This is partly
due to the fact the initialization procedure removes variations due to
position, size, and orientation (including coordinate inversions). A
similar conclusion can be reached by applying a mean template es-
timation algorithm, such as the one described by Joshi et al [3], to
the same dataset [21]. We expect the methodology presented here
to play an useful and important role in characterizing cell and nu-
clear shape for the purposes of teaching, understanding the effects
of different drugs and transfection agents, studying cell division and
apoptosis, modeling cell behavior, as well as in detection and char-
acterization of pathology, amongst other applications.
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