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ABSTRACT
Biological shape modeling is an essential task that is required for
systems biology efforts to simulate complex cell behaviors. Statisti-
cal learning methods have been used to build generative shape mod-
els based on reconstructive shape parameters extracted from micro-
scope image collections. However, such parametric modeling ap-
proaches are usually limited to simple shapes and easily-modeled
parameter distributions. Moreover, to maximize the reconstruction
accuracy, significant effort is required to design models for specific
datasets or patterns. We have therefore developed an instance-based
approach to model biological shapes within a shape space built upon
diffeomorphic measurement. We also designed a recursive interpo-
lation algorithm to probabilistically synthesize new shape instances
using the shape space model and the original instances. The method
is quite generalizable and therefore can be applied to most nuclear,
cell and protein object shapes, in both 2D and 3D.

Index Terms— Generative models, nuclear shape, microscopy,
machine learning, shape interpolation, location proteomics

1. INTRODUCTION

Proteins function in different cellular or subcellular compartments
to form a living cell system. In systems biology, modeling this com-
plex system from different aspects and at various levels is antici-
pated to contribute to a final understanding of cell mechanisms [1, 2].
Quantitative, predictive compartment models which capture the spa-
tial properties of subcellular structures is a basic building block for
modeling of complex cell behaviors. With high-throughput micro-
scopes capable of generating large numbers of high-resolution im-
ages, automated learning methods will be needed to build predictive
compartment shape models.

We have previously described approaches for learning genera-
tive models of important cell compartments and protein localization
[3]. In this work, nuclei were parameterized into B-spline coeffi-
cients of a medial axis curve and width from the media axis, and
cell boundaries were parameterized into a compressed vector of the
ratio of cell boundary position to nuclear boundary position in a po-
lar coordinate system center on the nucleus. Statistical learning was
performed on sets of parameters extracted from HeLa cell images to
fit proper distributions to them. Algorithms to synthesize new shapes
from sampled parameters were described for different protein distri-
butions.

In such parametric modeling methods, the shape space is repre-
sented by probabilistic distributions of parameters. Parametric meth-
ods usually induce very concise models, but they also have obvious
shortages. First, parametric description converts the shape into finite
set of parameters, which causes information loss during the simpli-
fication process. Second, shape parameter distributions are usually

arbitrarily fitted with frequently-used distributions by experience or
histogram inspection, which is often not accurate enough in the real
shape space. Third, complex shapes (especially 3D shapes) are often
not easy to parameterize.

As first described by Yang et al [4], non-rigid registration meth-
ods are a valuable alternative to parametric methods for analyzing
nuclear shape. Rohde et al [5, 6] proposed a registration-based mea-
surement of distance between deformable shapes using the large de-
formation diffeomorphic metric mapping (LDDMM) framework [7]
combined with Multidimensional scaling (MDS) [8] to reconstruct
the nuclear shape space. The work we describe here extends this
approach to a generative framework. To overcome the drawbacks
of parametric methods, we propose an instance-based approach to
model the shape space using kernel density estimation and a method
to synthesize new shapes from it. We illustrate the method using
2D nuclear shapes but it is equally applicable to higher dimensional
images.

2. METHOD

2.1. Shape space construction

Under the framework of computational anatomy [9], a set of shapes
can be related by a group of diffeomorphic transformations, one-to-
one smooth differentiable invertible mappings. Let Φ represent a
group of diffeomorphisms, over a bounded domain Ω. A deformed
image can be expressed as I(φ(x)), x ∈ Ω, then a series of images
I1, I2, . . . can be generated by a template I and a group of diffeo-
morphisms {I(φi)|φi ∈ Φ}, thus a shape manifold or ”orbit” can
be built. For images I1 and I2, we could imagine the transformation
that maps image I1 to I2 as the endpoint of an ordinary differen-
tial equation ∂φ(x,t)

∂t
= v(φ(x, t), t), subject to φ(x, 0) = x and

I1(φ(x, 1)) = I2(x). Then a distance metric can be defined on the
group of diffeomorphisms (shape manifold), which can be under-
stood as the incremental effort to transform one image to another:

d(I1, I2) = inf
v

∫ 1

0

‖Lv(·, t)‖dt (1)

where ‖·‖means one standard L2 norm on the velocity field v(x, t),
and L just represents a linear differential operator, for example L =
(∇2 + λI).

This distance can be computed by solving the following opti-
mization problem:

inf
v

∫ 1

0

‖v(·, t)‖2
V dt (2)

subject to: I1(φ(x, 0)) = I1(x) and I1(φ(x, 1)) = I2(x), x ∈ Ω
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In this paper, however, we use the more computationally efficient
greedy algorithm [10], which looks for the locally-in-time optima
instead of the global optima. In this method, we assume the velocity
is constant in each time step Δt and look for the locally optimal
velocity field by

L∗Lvt + bt = 0; (3)

with bt = −(I0(φ(x, t) − I1(x)))∇I0(φ(x, t)). After calculat-
ing the velocity in each time step, we can update the deformation
field based on Eulerian reference frame via φ(x, k + 1) = φ(x +
εv(x, k), k). We use the symmetric, inverse consistent version de-
scribed in [11].

After we compute the diffeomorphic distances between all im-
age pairs, a mutual distance matrix can be generated by: Dm,n =
d(Im, In), with d(Im, In) representing the distance computed by
greedy algorithm. Then multidimensional scaling can be applied on
D to find a group of low dimensional “Euclidean” coordinates, or
shape coordinates, that preserve the pairwise distances [8, 12]. The
goal of usingMDS is to unfold the shape manifold, built by the group
of diffeomorphisms, and represent the manifold in a low dimensional
“Euclidean” space. Each coordinate xk in the “Euclidean” space
with reduced dimension d corresponds to a specific shape of original
dataset.

2.2. Shape space distribution learning

Shape coordinates reside in a high dimension with a complex density
distribution. We therefore apply the non-parametric method kernel
density estimation [13] to approximate the shape space. To simplify
the problem, we use a spherical Gaussian kernel since MDS normal-
ize the coordinates in multi-dimensional Cartesian space. The pdf is
formulated as

p̂h(x) =
1

n

n∑
j=1

1(√
2πh

)d
exp

(
d∑

k=1

(xk − xj
k)2

2h2

)
(4)

Optimal bandwidth is selected to minimize the Kullback-Leibler di-
vergence [13] between approximate density p̂h(x) and the true den-
sity p(x).

DKL(p, p̂h) =

∫
p(x) log

p(x)

p̂h(x)
dx (5)

which is equivalent to maximizing∫
log[p̂h(x)]p(x)dx = E log[p̂h(x)] (6)

The expectation of the logarithmic likelihood can be approximated
by leave-one-out cross-validation for fixed bandwidth h [14].

L(x1,x2, · · · ,xn|h) =

n∑
i=1

log p̂h,i(xi) (7)

where p̂h,i is the leave-one-out likelihood estimator

p̂h,i(x) =
1

n − 1

∑
j �=i

1(√
2πh

)d
exp

(
d∑

k=1

(xi
k − xj

k)2

2h2

)
(8)

Full optimal bandwidth matrix can be estimated using a method in-
volving Markov chain Monte Carlo [14].

2.3. Shape space triangulation

The purpose of triangulation is to partition the shape space into tri-
angular mesh grids in order to interpolate un-sampled points in the
shape space. Given a set of shape points with reduced dimension d,
Delaunay triangulation [15] is used to triangulate the space, yielding
a set of d dimensional triangles with vertices of d + 1 points from
the original point set. A point is located in the triangulated space by
searching the enclosing Delaunay triangle. Both triangulation and
triangle search algorithms are implemented in the computational ge-
ometry toolbox qhull [16].

2.4. Shape sampling and interpolation

With the original shapes and probabilistic description of shape space
we can generate new shapes which also reside in the true shape space
and are statistically meaningful, by deforming existing shapes lo-
cated nearby in the shape space. First, sample a point from the dis-
tribution learned in 2.2 in the shape space and locate it in the tri-
angulated space by finding the d + 1 vertices of the d-dimensional
triangle which encloses it. Since diffeomorphisms can be calculated
only between pairs of shapes, recursive projection and deformation
algorithm is then performed to reach the shape represented by the
sampled point, according to the following algorithm.

Fig. 1. A demonstration of recursive projection and deformation
algorithm in a 3D shape space.

1. Start from dimension d, in a k dimensional triangle with ver-
tices X1, . . . , Xk+1, “project” Xk+1 to the plane defined by
X1, . . . , Xk via Ck, that is, find the intersection Ck−1 of ra-
dial

−−−−−→
Xk+1Ck and plane X1, . . . , Xk. Define ratio parameter

λk:
−−−−−→
CkCk−1 = λk

−−−−−→
Xk+1Ck and Ck−1 that satisfies

|ck−1 − x1,x2 − x1, . . . ,xk − x1| = 0 (9)

The iterative projection is solved by{
λk = |ck−x1,x2−x1,...,xk−x1|

|ck−xk+1,x2−x1,...,xk−x1|
ck−1 = (1 + λk)ck − λkxk+1

(10)

2. Remove the null dimension of set {ck−1,x1, . . . ,xk} since
they are coplanar in the k-dimensional space. This is achieved
by a coordinate conversion: projecting all coordinates onto
the first k− 1 principal components of the covariance matrix.

[ck−1,x1, . . . ,xk] ← [P1, . . . ,Pk−1]
T [ck−1,x1, . . . ,xk]

3. On k − 1 dimensional coordinate set {ck−1,x1, . . . ,xk} re-
peat step 1 and 2. Each time a ratio parameter λk is calculated
by equation (7) until in the end only c1, x1, x2 are left, which
are all scalars, and λ1 = (x2 − c1)/(c1 − x1).
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4. Knowing λ1, . . . , λk, starting from λ1 and I(X1), I(X2),
the shapes represented by X1, X2, generate an intermediate
shape I(Ck) which corresponds to the coordinate ck in the
shape space by deforming shape I(Xk+1) to shape I(Ck−1)
and capturing the shape at 1/(1 + λk) along the deformation
path (C0 = X1).

5. Repeat step 4 until the destination shape I(Cd) is generated.

6. Output the shape I(Cd) as the synthesized shape image.

3. RESULTS

To build a complete instance-based generative shape model, we used
previously acquired two dimensional images of Hela cell nuclei ex-
pressing lamin modifications(a total of n = 160 nuclei images with
relatively complex shapes), and pre-process images by removing
variation in overall orientation, position and size, as described in
[5].

3.1. Algorithm validation

We assume shapes generated from our recursive interpolation algo-
rithm still reside in the shape space. To validate this assumption, we
use leave-one-out re-interpolation. After construction of the shape
space, for every shape point which does not reside on the convex
hull enclosing all points, we remove it and use the remaining n − 1
points to construct the triangulated mesh. We locate the excluded
point in its enclosing triangular simplex and regenerate the shape it
stands for using our recursive interpolation algorithm. Comparison
between original shape and interpolated shape shows little differ-
ence, see Figure 2.

(a)

(b)

Fig. 2. Comparison between original shape and interpolated shape.
(a) Original nuclear shapes. (b) Corresponding shapes interpolated
from models built without them.

3.2. Shape space dimension

By registering pairs of binary nuclear images, we calculate the dif-
feomorphic distance matrix D (n × n) and perform MDS on it.
Residue variances (defined to be 1 − R2(D̃, D), D̃(d × d) – pair-
wise distance matrix in reduced dimension space, which is an ap-
proximation ofD; R – correlation coefficient between the entries of
both matrices) at each reconstruction level are calculated to reflect
distance preserving extent after dimension reduction. The intrinsic
dimensionality of the data is estimated by looking for the “elbows”

at which the residual variance ceases to decrease significantly with
added dimension [6, 17]. Figure 3 shows the residue variance as a
function of dimension used in distance matrix reconstruction and we
conclude that d = 6 is a sufficiently descriptive dimension of the
space.

Fig. 3. Residual variance of distance reconstruction as a function of
number of dimension in shape space construction using LDDMM-
MDS.

3.3. Bandwith selection

In fitting shape space distribution with kernel density estimation,
we run cross-validation on bandwidth h varying from 10−2 to 1 by
steps of 10−3. Figure 4 shows the peak part of the cross-validation
score Ê log[p̂h(x)] as a function of bandwidth h. Optimal band-
width is reached at h = 0.059 which eventually minimizes the KL-
divergence between the true and fitted distributions.

Fig. 4. Approximate expectation of the logarithmic likelihood as a
function of bandwidth h.

3.4. Synthesized shape

We sample random vectors according to distribution with optimal
bandwidth. Figure 5 shows synthesized nuclear shapes using the
recursive interpolation algorithm. Since shapes synthesized from
grid interpolation only reside inside the convex hull enclosing all
instances, while the “point cloud” like distribution covers infinite
space, we re-sample if a point outside the convex hull is generated.
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Fig. 5. Examples of synthesized nuclear shapes.

4. CONCLUSION AND DISCUSSION

We propose an instance-based generative modeling method for bio-
logical shapes. The model contains three parts: original shape in-
stances, shape coordinate representations in shape space and distri-
bution function of shape space. Under this framework, synthesized
shapes generated by deforming real shapes are reasonable instances
of the family. More important, LDDMM is not restricted by shape
dimension or complexity, which makes the model highly generaliz-
able.

Our method of building generative models for biological shapes
can be applied to both 2D and 3D images. Since there is no assump-
tion on the shapes to be modeled, it allows very complicated shapes,
such as shapes with many invaginations. Moreover, applications are
not limited to static shape modeling. Given time series cell images,
we can build non-parametric predictive cell deforming (crawling,
spreading etc.) models for live cell simulation. The method can also
model composite shapes (piecewise constant images), for example,
nested shapes of cell membrane combined with nuclei, revealing the
spatial relations of different shape components.

Both non-parametric density estimation and neighboring inter-
polation requires as many original data as possible. During our val-
idation studies, we noticed that some regenerated shapes did not
match the original image well. This is presumably because of an
overly sparse distribution of shapes around it, in which case the in-
terpolation is done using shapes faraway in shape space. Determin-
ing criteria for the number of images required to partition the space
finely enough for a desired level of interpolation accuracy remains a
theoretical problem to be investigated. Additionally, all shapes we
are able to generate this way must be inside the convex combination
(in the shape manifold) of existing points (instances). This limitation
is also presumably addressed by collecting large numbers of images,
a task greatly simplified by automated microscopes.
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