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� Abstract
The microtubule network plays critical roles in many cellular processes, and quantita-
tive models of how its organization varies across cell types and conditions are required
for understanding those roles and as input to cell simulations. High-throughput image
acquisition technologies are potentially valuable for this purpose, but do not provide
sufficient resolution for current analysis methods that rely on tracing of individual
microtubules. We describe a parametric conditional model of microtubule distribution
that can generate a microtubule network in intact cells using a persistent random walk
approach. The model parameters are physically meaningful as they directly describe the
spatial distribution of microtubules and include the number of microtubules as well as
the mean of the length distribution. We also present an indirect method for estimating
the parameters of the model from three-dimensional fluorescence microscope images
of cells that relies on comparing acquired images with simulated images generated from
the model. Our results show that our method can reasonably recover parameters for a
given query image, and we present the distributions of parameters estimated by our
method for a collection of HeLa cell images. ' 2010 International Society for Advancement of

Cytometry
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UNDERSTANDING the many complex cellular and subcellular processes underlying

biological phenomena will require approaches for obtaining spatiotemporal informa-

tion for the many thousands of proteins expressed in a typical cell. These measure-

ments (in many cases in the form of statistical estimates) can then be used in model-

ing and simulation efforts where the goal is to predict and help understand cellular

systems. One such example in microtubule organization is the simulation of micro-

tubules with motor proteins in order to understand their phenotypic behavior (1).

Another example in the area of cytoskeleton organization is the simulation of actin

to understand the lamellipodial behavior of a cell (2).

Among the many relevant cellular phenomena to be modeled and quantified,

the subcellular spatial distribution of proteins (their location and overall organiza-

tion) is important because of the crucial role that location plays in many cellular phe-

nomena. Many neurodegenerative diseases such as Alzheimer’s and Parkinson’s are

related to the malfunction of microtubule associated proteins and the microtubule

network that leads to the accumulation of protein aggregates in brain cells (3). Tech-

nologies that facilitate the quantitative analysis of protein location, on a proteome-

wide scale, therefore would have potentially high impact.

Many approaches have been described for obtaining subcellular location data of

large numbers of protein distributions (4–8). Green fluorescent protein (GFP) tag-

ging has emerged as the most widely used tool for this purpose and has enabled pro-
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teome-scale studies (see Ref. (9) for a prominent example using

GFP-fusions in yeast). A notable exception is the work by the

Human Protein Atlas project (10,11), which uses antibody-based

methods and has generated millions of images for over six thou-

sand antisera against various proteins. Although it is possible to

interpret the information content in such collections visually,

automated approaches can play an important role in extracting

more detailed quantitative information from them (12).

Potential frameworks to characterize protein location

patterns from such image data include descriptive techniques

and generative models. In short, descriptive techniques seek to

describe the content of images using numerical feature vectors,

one vector per cell or image. These techniques enable auto-

mated subcellular location determination using supervised

learning approaches (see Ref. (13), for an example) but, in the

absence of any associated modeling technique, they cannot be

used to provide quantitative physical information pertaining

to the protein distributions. Generative models, on the other

hand, generalize from examples by learning a description of

the underlying process believed to give rise to the image (14).

We have previously described a framework to learn generative

models of multiple subcellular location patterns from cells

(15). Cell membrane, nuclear and protein object models were

constructed so that simulated images representing seven dif-

ferent subcellular location patterns could be generated. In

short, one way to fully understand the location patterns of

individual proteins in a given cell type is to summarize this in-

formation in the form of a model that can accurately represent

the statistical variation contained in a set of fluorescence mi-

croscopy images. In the context of this work, we sought to

demonstrate that physically meaningful parameters describing

the process by which protein distributions are generated can

also be learned from these images. We also sought to extend

our previous modeling framework, which represented protein

distributions as a collection of distinct objects (15), to protein

distributions such as microtubule networks, that cannot be

easily represented as objects.

There are several direct methods for estimation of microtu-

bule parameters by tracing described in the current literature.

For these, however, the imaging approach is either not suitable

for intact cells, or the image resolution is not sufficient to dis-

cern individual microtubules throughout the entire extent of

the cell (16–20). This can be seen in Figure 1 in which the high

density of microtubules near the centrosomal region makes it

impossible to visually or computationally extract individual

tracks. Even in regions where individual tracks can be discerned

(often near the boundary of the cell), tracing algorithms are

invariably hindered by ‘‘crossing’’ tracks. One solution is to use

specialized microscopy methods that greatly enhance estimation

of filament like structures: fluorescence speckle microscopy

(21), fluorescence correlation spectroscopy (22), and stimulated

emission depletion microscopy (23). However, these methods

are not easy to apply on a proteome scale. Indirect approaches,

on the other hand, are more suitable for filament structures

since the structures themselves do not have to be matched

exactly but rather the pattern they form in an image is matched

instead. A compelling example of such an approach was used to

validate models of the mitotic spindle (24). In that study, how-

ever, very limited and simple image features such as mean of

fluorescence intensity were used to compare patterns in the

images. Another excellent example of an indirect method was

the analysis of the structure and dynamics of the actin filament

network in the lamellipodia of a migrating cell (25). However,

images in this work were cropped to a representative region in

the lamellipodia that would not be expected to yield accurate

estimate parameters for the entire cell. The method of compari-

son used only a distribution of correlation lengths from images,

which may not be adequate to completely quantify complex

patterns in images resulting from overlapping filament struc-

tures.

OVERVIEW OF OUR CONTRIBUTION

The principle behind the system we describe is that very

basic a priori knowledge can be used to formulate models of

Figure 1. Example image from the 3D HeLa dataset. (A) shows the sum

X-Y projection of the image (B) shows a slice along the X-Z direction and

(C) shows a slice along the X-Y direction. The scale bar is 10 lm.
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proteins from which artificial images are generated (according

to initial estimates of the parameters of the model). The model

parameters are then iteratively modified until a specified simi-

larity measure between the real input images and the artificial

ones is maximized. The critical steps in this procedure are

shown in Figure 2 and include microtubule pattern genera-

tion, image simulation, and comparison with a real micro-

scopic image. These steps are assembled into an optimization

procedure to be detailed below. We have obtained preliminary

results with both simulated and real data showing that

extraction of such parameters for microtubule distributions is

feasible.

MATERIALS AND METHODS

Data Acquisition

Images of 3D HeLa cells previously obtained by three-

color confocal immunofluorescence microscopy (26) were

used. This collection contains approximately 50 images for

each of nine different proteins, including tubulin. Each image

consists of three channels, one reflecting the distribution of

DNA (as visualized with propidium iodide after RNAse diges-

tion), total protein (as visualized with a nonspecific reactive

probe), and a specific protein (as visualized with a well-char-

acterized monoclonal antibody). The spacing between voxels

in the image is 0.05 microns in the focal plane (the X and Y

dimensions) and 0.2 microns in the axial dimension (the Z

dimension).

COMPUTATIONAL METHODS

Preprocessing

The raw images were first downsampled in the X-Y

dimension due to memory and computational issues from

0.05 microns to 0.2 microns per voxel. Hence the final voxel

spacing is uniform in all three directions; the number of voxels

in the X or Y dimension reduced from 1024 to 256.

Estimation of the Point Spread Functions

Three point spread functions were estimated for the cell

membrane, nuclear membrane and alpha-tubulin-GFP chan-

nels. The point spread functions for the cell membrane and

nuclear channels were estimated using the Diffraction PSF 3D

ImageJ plugin (http://www.optinav.com/Diffraction-PSF-3D.

htm). The plugin outputs the emission point spread function.

The confocal point spread function is approximated as the

square of the emission point spread function. The point

spread function for the alpha-tubulin-GFP channel was

directly estimated from the fluorescence microscopy image.

Line intensities along the X dimension and along the Z dimen-

sion were computed for clearly distinguishable and well

separated microtubules wrapped around the nucleus. The line

profiles were registered and truncated to size 7, and averaged

for the X and Z dimension. A 3D Gaussian was manually fit

and was used as the point spread function.

Segmentation to Estimate the Cytosolic Space

Each channel of each image was corrected for background

fluorescence by subtraction of the most common pixel value

and deconvolved with a theoretical point spread function for

the nuclear channel and the cell membrane channel. The

images were segmented into single cell regions using seeded

watershed segmentation. The cell boundary and nuclear

boundary in each slice was then found using the active con-

tour method on the deconvolved cell membrane channel and

nucleus channel, respectively (27).

Figure 2. Overview of the Approach.
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Estimating Location of the Centrosome

The tubulin image was convolved with a 3 3 3 3 3 aver-

aging filter. The location of the centrosome was estimated to

be the voxel with the maximum intensity.

Growth Model of Microtubule Patterns

The model of microtubule distribution was constructed

using a growth model conditioned on the centrosome location,

cytosolic space and the parameters of the model. The growth

model consists of generating microtubules as points on a star

network with the hub as the centrosome. Let X0 denote the loca-

tion, in three dimensions, of the center of the centrosome of a

given cell. Assuming the centrosome a sphere, we fix the diame-

ter of a centrosomal structure to be approximately 0.4 lm. We

generate N random points Xi
0 : i 2 Z ; 1 � i � N inside the

volume of the sphere where N is the number of microtubules

to be generated. Each point in the sphere is extended by a

fixed length step in a random direction to a new point Xi
1.

These short segments are further extended by picking a point

Xi
2 with step length c that satisfies two constraints. The stiff-

ness constraint is as follows:

cos a � m1 � m2 � 1

m1 ¼
X1 � X0

jjX1 � X0jj
with

m2 ¼
X2 � X1

jjX2 � X1jj

and a - angle between (X2 2 X1) and (X1 2 X0). In our model,

cos(a) is called the collinearity parameter. Points are also con-

strained to be generated in the cytosolic space using a lookup

image that was estimated using segmentation.

We model the length distribution as a normal distribu-

tion, truncated such that there can be no negative lengths

(28). This distribution was shown earlier to fit the lengths of

microtubules well in the meiotic spindle (29). The random

variable X � N(l,r2) conditioned on (0 \ X \1) follows a

probability density function:

f ðx; l; r; a; bÞ ¼
1
r / x�l

r

� �

1� U �l
r

� �

where / is the probability density function of the standard

normal distribution and F is the cumulative distribution

function. This distribution is sampled N times, where N is the

number of microtubules. The microtubule elongation proce-

dure is iterated for each of N microtubules, until the sampled

lengths of the microtubule polymer is satisfied. The following

are thus the model parameters:

1. Diameter of the centrosomal sphere: 0.4 lm (fixed)

2. step length: 0.2 lm (fixed)

3. number of microtubules: n

4. collinearity: cos a
5. mean of the normal distribution: l
6. standard deviation of the normal distribution: r

Simulated Pattern to Simulated Image

The microtubule structure model is convolved with the

estimated point spread function to simulate a fluorescence mi-

croscopy image generation process. The resulting polymerized

tubulin image is multiplied by a scalar such that the single

microtubule peak intensity from the simulated image matches

the mean of the peak single microtubule intensity in the raw

image.

Grid Generation

We generated a grid of simulated images by varying

model parameters. The range of the values for the standard

deviation of the length distribution and the collinearity (cos

a) did not take all possible values, but was based on how

much real variation we believe is present. The parameters var-

ied took the following values:

n 5 5, 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275,

300

l 5 5, 25, 50, 75, 100, 125, 150 microns

r 5 1, 5, 10, 15, 20, 25 microns

cos a 5 0.9, 0.95, 0.98

Thus, for a given cell morphology, a total of 1638 images

were generated.

Feature Computation

1) Thirteen 3D Haralick texture features were computed

from a single co-occurrence matrix for all the 13 directions of

voxel adjacency for each image (30). Two more sets of these

features were computed by downsampling the image by two

and by four. 2) The image was discretized in subvolumes

radially starting from the centrosome. Radial intensity features

were calculated by computing the total intensity in these sub-

volumes and normalizing by their respective volumes. 3) His-

togram features were computed that consist of standard meas-

ures such as Mean, Variance, Skewness, Kurtosis, Energy and

Entropy. 4) The total intensity was computed as a feature that

is the sum total of all gray level values in the 3D image.

Distance Function and Matching

A diagonal matrix D was computed that contains the var-

iances of the features. This variance matrix was then used to

compute the Normalized Euclidean distance between a feature

vector xs computed from a set of simulated microtubules

(simulated image) and a feature vector xr corresponding to the

image based on which the microtubule simulation was com-

puted (raw image). In this case, the Normalized Euclidean dis-

tance is given by

d2
rs ¼ ðxr � xsÞD�1ðxr � xsÞ0

For any query image, we computed the Normalized Eu-

clidean distances from each of the large grid of simulated

images. The optimization problem estimates parameters by

minimizing the Normalized Euclidean distance: [n, l, r, cos a]

5 argmin d2
rs .
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Sensitivity Analysis

To determine how well model parameters can be recov-

ered by matching, 400 parameter sets were randomly selected

from the grid. Images were generated based on these parame-

ter sets with different random number generator seeds than

those from the images in the image grid. Image matching was

done with each of the 400 query images.

The error metric used was the mean absolute percentage

error (MAPE).

MAPE ¼ 1

400

X400

t¼1

Rt � St

Rt

����
����

where

Rt - Query Image parameters

St - Estimated Image parameters.

RESULTS

Generative Model of Microtubule Patterns

Cell and nuclear boundaries and centrosome location. Ty-

pically, microtubules grow out from the centrosome and grow

within the cytosolic space of the cell. Hence, a generative

model of the microtubule pattern must be conditioned

(dependent) on a nuclear model and a cell membrane model.

To build a model from a 3D cell image, the nuclear and cell

membrane channels were deconvolved with their respective

point spread functions and segmented semi-automatically

using the Active Contour without Edges approach (see Meth-

ods). The central point from which microtubules grow is the

centrosome, and its position can be directly estimated from

the tubulin channel. Figure 3 shows the cell boundary, the nu-

cleus boundary and the centrosome location for a slice of the

image in Figure 1.

Microtubule growth model and image simulation. The

growth model consists of generating different numbers of

microtubules (each with a specified length) by extending short

segments starting from a single point in the cytosolic space

(the centrosome). The model parameters that are varied are

the number of microtubules, the mean and standard deviation

of the length distribution of microtubules, and the collinearity

(see Methods). Given specific values for each parameter, an

image can be generated that simulates a microtubule distribu-

tion, as it would be imaged under the specified condition. Fig-

ure 4 shows a model of the microtubule network generated by

this method and an image that results from convolving it with

a point spread function.

Estimating Model Parameters

A grid of simulated images was generated using the

model by varying the model parameters. Image features, nu-

merical descriptors that encode the image content, were then

calculated for both real and simulated images (see Methods).

We measured the similarity between the query image and each

of the simulated images by computing the Normalized Euclid-

ean distance in feature space. The best fit parameters were

chosen as the ones minimizing the Normalized Euclidean

distance.

Evaluating the Matching Procedure Using

Simulated Data

To check the model’s ability to recover parameters when

these are known, images of microtubule patterns were simu-

lated using the methodology described. For each simulation

Figure 3. Cell and nuclear boundaries and centrosome location

Figure 4. An example rendering of a microtubule 3D model shown as a projection of the synthetic microtubules and after conversion to a simu-

lated microscope image (sum projected along Z-axis) using a point spread function. The background color is changed to reflect model and image.
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we tested whether the estimation procedure could be used to

recover the known parameter values. The cost function is de-

pendent on the choice of features computed from the images

and the distance metric in feature space. A plot of the Normal-

ized Euclidean distance as a function of different parameters

around the vicinity of the optimal parameters (Number of

microtubules 5 150, Mean of length distribution 5 75

microns, Standard Devation of length distribution 5 10

microns, Collinearity 5 0.95) is shown in Figure 5. The cost

functions for the parameters show clear minima for the num-

ber of microtubules and the mean of the length distribution of

microtubules, suggesting that the method of minimization

could potentially recover parameters. However, in order to

test this, we computed the accuracy of the method on simu-

lated data. Table 1 shows the average over four realizations of

the mean absolute percent error (MAPE) as a measure of the

accuracy of recovering model parameters (See Methods). Vari-

ous feature sets were tested in various combinations, and the

error was observed to be minimum when all the six sets of fea-

tures were used in the distance function. All the subsequent

analyses were performed using all six feature sets in the dis-

tance function. Since, the growth model is stochastic, we also

studied the error as a function of number of average realiza-

tions (computing a distance between a query feature vector

and an average feature vector over the number of realizations

for each parameter set). The error was only observed to

decrease by at most a few percentage points (e.g., from an

error of 8.7% to an error of 7% for the number of microtu-

bules) as we increased the number of realizations (data not

shown). Hence, in order to reduce computation costs, all subse-

quent comparisons of query images with synthetic images were

performed for only a single realization of the parameter set.

Estimating Parameters from a 3D HeLa Image Dataset

Using this approach, we next estimated parameters from

the images in the 3D HeLa dataset. In these computations we

restricted the search to be conducted over parameter values

that produced images of similar total tubulin as the input real

image. This was done by first estimating the amount of varia-

tion in the peak intensity of a single microtubule. We chose

one standard deviation of this variation and converted it into

a standard deviation of total tubulin using the following

formula:

Figure 5. Cost function plots for (A) Number of microtubules (B) The mean and standard deviation (C) of the length distribution of micro-

tubules and (D) Collinearity.
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Total Tubulinlim ¼

P
pixels

image

8
>>>:

9
>>>;Imean

cI lim

where Imean is the mean of peak single microtubule inten-

sity estimated, Ilim is the upper or lower limit of intensity

that is one standard deviation away from Imean, c is the

total intensity from a simulated microtubule point. The

simulated images in the grid were searched over this band

of total tubulin.

For the 3D image shown in Figure 1, the optimal parame-

ters are: number of microtubules 5 175; mean of the length

distribution 5 25 microns; standard deviation of the length

distribution 5 15 microns and the collinearity 5 0.9. The

simulated image corresponding to the optimal parameter set

based on the matching is shown in the center column of Fig-

ure 6. To check if a visually reasonable match was picked by

the algorithm, variations across the best match are also shown

with images of varying number of microtubules (A), mean of

the length distribution (B), standard deviation of the length

distribution (C), and the collinearity of the microtubules (D).

The leftmost image of Figure 6A shows an example of a bad

parameter set that has very few microtubules. Figure 7 shows

the estimated images and parameters for three cells in the 3D

HeLa dataset. We also present the estimated parameters for 42

images from the dataset as histograms for each of the parame-

ters (Fig. 8).

DISCUSSION

We presented a model-based approach to generate micro-

tubule patterns that mimic some of the aspects of microtubule

distributions in cultured cells. The algorithm generates images

and measures similarity between each of the generated images

and the query image by computing a Normalized Euclidean

distance in feature space. The structural information about the

microtubule distribution in a query image is approximated as

the parameters of the generative model that generated the

simulated image with the smallest Normalized Euclidean

distance.

We have used a stochastic path generation algorithm to

create microtubule distributions. The microtubule segments

in our growth model are extended using a persistent random

walk procedure where successive segments are related by a

range of correlation coefficients (31). The collinearity parame-

ter used here is a lower bound on the correlation coefficient

(with the upper bound fixed at one) that can be understood as

a single stiffness parameter. A related stiffness parameter that

is commonly used in persistent random walk methods is the

persistence length that can also be estimated from our growth

model. The persistent random walk growth model is a simple

approach but has been used previously to generate microtu-

bule filament patterns (32).

We have validated our parameter estimation approach

using simulated data. Using the same modeling for simulation

and recovery, results showed that the average error for recover-

ing the number of microtubules in an image was about 9%

while the error in the recovery of the mean length parameter

Table 1. Error estimates for parameter recovery

FEATURE SETS

MEAN ABSOLUTE PERCENT ERROR (AVERAGE OVER FOUR REALIZATIONS)

NUMBER OF

MICROTUBULES

MEAN OF LENGTH

DISTRIBUTION OF

MICROTUBULES (lM)

STANDARD DEVIATION OF LENGTH

DISTRIBUTION OF MICROTUBULES (lM) COLLINEARITY TOTAL

tot 70 102 141 3.9 316.9

his 12 17 221 2.5 252.5

har 10 19 226 1.5 256.5

ha2 14 24 230 1.7 269.7

ha4 17 32 233 1.7 283.7

rad 30 53 235 1.7 319.7

har, rad 10 19 233 1.2 263.2

tot, har 10 18 223 1.5 252.5

tot, rad 27 48 232 1.5 308.5

his, har 8 15 231 1.3 255.3

har, ha2, ha4 12 21 223 1.5 257.5

tot, har, ha2, ha4 12 21 222 1.4 256.5

har, ha2, ha4, rad 12 21 235 1.3 269.3

his, har, ha2, ha4, rad 9 15 227 1.2 252.2

tot, his, har, ha2, ha4, rad 9 15 226 1.2 251.2

rad—Radial intensity features;

his—histogram features;

har—Haralick texture features;

ha2—Haralick texture features downsampled by 2;

ha4—Haralick texture features downsampled by 4;

tot—total intensity feature.
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was around 15%. We have also extracted microtubule distribu-

tion parameters from real images. In this case results are

harder to interpret since the correct values are unknown.

Overall, the recovered parameters are able to generate images

of similar overall appearance to those of the corresponding

real images. Also, the ranges of recovered parameter values

(Fig. 8) are of the appropriate order according to the findings

in a study of microtubules in intact cells (33).

FUTURE DIRECTION

Although we have validated our methods using simulated

data, and have used them to estimate parameters that appear to

be reasonable from real data, we believe more can be done to fur-

ther increase our confidence in these estimates. One of our future

plans along this direction is to estimate parameters from cells

under conditions where we expect the number and length of

microtubules to change (such as in the presence of microtubule

depolymerizing drugs like nocodazole). We plan to test whether

the estimated parameters follow the expected behavior, and if not,

to modify the model or the estimation approach appropriately.

In addition, although our modeling approach at this point

is relatively simple, it can be easily expanded to incorporate more

biologically relevant information. For example, our growth

model can be made to include kinetic parameters such as growth

and shrinkage rates to model dynamic instability of micro-

tubules, or parameters that capture its interaction with molecular

motors (34). It may be possible to incorporate some of these

parameters by mapping them to the current model parameters

(such as length distribution).

Figure 6. Effect of variation of model parameters on image appearance. The image whose parameters provide the best match to the image

in Figure 1 is shown in the center column, and images with higher or lower values of each parameter are shown in the left and right col-

umns, respectively. (A) Number of Microtubules (B) The Mean and Standard Deviation (C) of the length distribution of microtubules and

(D) Collinearity. The scale bar is 10 lm.
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Figure 7. Query images (left column) from the 3D HeLa dataset and Estimated Images (right column) along with the estimated model para-

meters.The scale bar is 10 lm.

Figure 8. Histograms of the parameters estimated for 42 cells of the 3D HeLa dataset.



In the future, we anticipate that our model can be merged

with generative models of other protein patterns. Microtu-

bules are critical for intracellular transport and vesicles that

are transported by molecular motors along microtubules.

There are numerous microtubule associated proteins (MAPs)

such as the microtubule end binding protein (mEB1), whose

patterns are dependent on microtubule network. The model

will be able to generate instances of protein patterns that are

dependent on the microtubules (such as lysosomal proteins

and microtubule end binding proteins).

The current approach can be used to learn models for

other structures that have network/filamentous appearance.

Particularly, patterns that make up the cell cytoskeleton such

as actin and intermediate filaments, or proteins that make up

the connective tissue such as collagen fibers, may be quantified

by this method.
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