
TSTOOL User Manual

Version 1.11

Christian Merkwirth
Ulrich Parlitz

Immo Wedekind
Werner Lauterborn

April 12, 2002

Contents

1 At a glance 5

2 Download and Installation 7

2.1 Installation . 7

2.1.1 Windows . 7

2.1.2 Unix . 7

2.1.3 Global installation . 8

2.2 First Steps . 8

2.3 Pitfalls . 8

2.4 Copyright notice . 8

3 First Steps 9

3.1 Example analysis of a time-series from a chaotic Colpitts oscillator 9

4 Nearest Neighbors Searching 13

4.1 Definition . 13

4.2 Approximate nearest neighbors searching . 13

4.3 Range searching . 14

4.4 Matlab mex-functions . 14

4.4.1 nn prepare . 14

4.4.2 nn search . 14

4.4.3 range search . 15

4.5 Example session . 16

5 Handling the Graphical User Interface 19

5.1 Filelist . 19

5.2 Figure . 20

5.3 Menus . 20

5.3.1 Signal . 20

5.3.2 Methods I . 21

5.3.3 Methods II . 22

2

5.3.4 Utilities . 23

5.3.5 Modify . 24

5.3.6 Macro . 25

5.3.7 Options . 25

5.3.8 Help . 26

5.3.9 View . 26

6 Mex-Function Reference 27

6.1 akimaspline - Cubic spline interpolation using Akima splines 27

6.2 amutual - compute auto mutual information function 28

6.3 baker - Generate Baker time-series . 28

6.4 boxcount - Classical boxcounting algorithm . 29

6.5 cao - Determine minimum embedding dimension by Cao’s method 29

6.6 chaosys - integrate dynamical system given by a set of ordinary differential equations 30

6.7 corrsum - Computation of the correlation sum . 32

6.8 corrsum2 - Computation of the correlation sum . 33

6.9 fnearneigh - Fast nearest neighbor search . 34

6.10 gendimest - Estimate generalized dimension spectrum 35

6.11 henon - Generate henon time-series . 36

6.12 largelyap - Compute separation of nearby trajectories 36

6.13 nn prepare - Do nearest neighbor preprocessing . 37

6.14 nn search . 37

6.15 predict . 38

6.16 range search . 39

6.17 return time . 39

6.18 takens estimator . 40

6.19 tentmap - Generate tentmap time-series . 41

6.20 Class signal . 43

6.20.1 Overview . 43

6.20.2 Attributes . 43

6.20.3 Member functions . 43

6.21 Class description . 66

6.21.1 Overview . 66

6.21.2 Attributes . 67

6.21.3 Member functions . 67

6.22 Class core . 70

6.22.1 Overview . 70

6.22.2 Attributes . 70

3

6.22.3 Member functions . 71

6.23 Class achse . 79

6.23.1 Overview . 79

6.23.2 Attributes . 79

6.23.3 Member functions . 79

6.24 Class unit . 82

6.24.1 Overview . 82

6.24.2 Attributes . 82

6.24.3 Member functions . 82

6.25 Class list . 84

6.25.1 Overview . 84

6.25.2 Attributes . 84

6.25.3 Member functions . 84

7 Frequently asked questions 87

7.1 Questions . 87

7.2 Answers . 88

7.2.1 Introduction and general information . 88

7.2.2 Installation of TSTOOL . 88

7.2.3 Working with TSTOOL . 89

7.2.4 Extending TSTOOL . 91

7.2.5 Miscellaneous questions . 91

7.2.6 Frequently encountered errors . 92

4

Chapter 1

At a glance

What is TSTOOL ?

TSTOOL is a software package for signal processing with emphasis on nonlinear time-series analysis.

Objectives

• Implement existing algorithms for nonlinear time-series analysis

• Develop new methods for specific data analysis problems

• Create an expandable platform for signal processing

Implementation

The package is written partly in Matlab and partly in C++.

Advantages of Matlab are :

• Reduced code development time

• Extensive collection of intrinsic mathmatical functions

• Excellent graphic capabilities

• High portability from Unix to Windows NT and other platforms

C++ is used for computationally demanding algorithms.

Graphical user interface

A graphical user interface (GUI) gives access to the underlying signal processing commands. Para-
meters for the commands are set via dialog windows.

5

Chapter 2

Download and Installation

2.1 Installation

Unpack the compressed TSTOOL distribution into a directory, e.g C:\Program Files on Windows,
/usr/local on Unix.

This can be done with an unpacking tool like Winzip if you are working with Windows, or gzip -dc
filename.tgz | tar -xvf - if you are working with Unix.

After unpacking TSTOOL you get a new directory named OpenTSTOOL witch should now contain:

• startup.m - the matlab startup script that calls settspath.m

• settspath.m - a script that does path settings

• tstoolbox - the directory that contains all TSTOOL functions, mex files etc.

• mex-dev - Source code of the C++ parts of TSTOOL

• Doc - HTML/PDF Documentation

• gpl.txt - Gnu General Public License

There are several methods to install TSTOOL.

2.1.1 Windows

The simplest way is to change to the OpenTSTOOL directory and run Matlab. Matlab will execute
the startup.m file and so the path settings will be done correctly. Under Windows you can generate
an ’TSTOOL’ icon (a reference to the matlab binary) with the working path as OpenTSTOOL. After
double-click to this new icon simply type tstool.

You can also use the global installation method (2.1.3) under Windows if you dont want to change
your working directory to the OpenTSTOOL-directory.

2.1.2 Unix

Under unix-like multi-user environments there’s an other possibility to install tstool. Edit or create a
file ~/matlab/startup.m and enter the following lines into it:

path(’<full path to the OpenTSTOOL-Dir>’,path);
settspath(’<full path to the OpenTSTOOL-Dir>’);

Now you can invoke matlab everywhere and have access to TSTOOL.

7

2.1.3 Global installation

Last but not least if all users of a network wide matlab installation should have access to TSTOOL,
edit the file toolbox/local/matlabrc.m in the network wide matlab installation and insert the few
lines above (2.1.2) into it if you have permission to do so. Otherwise ask your system administrator.

2.2 First Steps

1. Start Matlab

• Windows: Double click the TSTOOL icon that you placed onto your desktop

• Unix: (installed as 2.1.1), change to the OpenTSTOOL directory and run matlab

• Unix: (installed as 2.1.2) simply run matlab

2. Enter tsdemo on the Matlab console. This should start a short demo script.

3. Enter tsdemo2 on the Matlab console. This should run a second script that shows an analysis
of a chaotic signal. The reference output of the analysis can be found here.

4. Enter tstool to start the graphical user interface for the TSTOOL package.

2.3 Pitfalls

See also the FAQ (frequently asked questions) 7!

1. When using Winzip, enable Use path information to make sure that subdirectories are created.

2. If you issue the command "clear all" at the Matlab console, TSTOOL will no longer work
properly. As a remedy, simply change to the TSTOOL base directory and issue "settspath".

3. TSTOOL will not work with Matlab version prior to 5.2!

4. Matlab 5.2 needs a patch from The Mathworks to work properly under Windows 98

5. It’s not a good idea to place the TSTOOL distribution into the Matlab directory. We obtai-
ned reports about strange bugs occuring when the TSTOOL distribution is extracted into the
directory where the Matlab system is installed.

6. Under Irix there are some version conflicts between Matlab 5.2/5.3 and 6. The extension of the
mex-files has changed. Normally this is no problem because the old extension will also work
but TSTOOL have own mex-file directories for each system (Sun, Linux, SGI, Windows) named
with this mex-file extension. So the path settings settspath do can be incorrect for the Irix
system. In such case please replace the following line in the settspath.m file:

path(fullfile(TSTOOLpath, fullfile(’mex’, mexext)), path);

with this line:

path(fullfile(TSTOOLpath, fullfile(’mex’, ’mexsg64’)), path);

2.4 Copyright notice

TSTOOL falls unter the Gnu General Pulblic License. See gpl.txt in the OpenTSTOOL directory
or http://www.physik3.gwdg.de/tstool/gpl.txt. .

8

http://www.physik3.gwdg.de/tstool/gpl.txt

Chapter 3

First Steps

3.1 Example analysis of a time-series from a chaotic Colpitts
oscillator

In this section we briefly demonstrate basic steps for anaysing a chaotic time series. The methods
used will be explained ind maore detail in the following sections.

>> s = signal(’colpitts.dat’,’ascii’)
s = signal object

Dlens : 6001
X-Axis 1 : |

Name : colpitts
Type :

Attributes of data values :
|

Comment :

History :
17-Aug-1999 15:08:24 : Imported from ASCII file ’colpitts.dat’

By entering the above command line, the overloaded constructor for class signal was called. Giving a
filename as argument tells the constructor to load the datafile and convert it into a signal object. The
datafile ’colpitts.dat’ contains a time-series generated by an electronical Colpitts circuit that oscillates
chaotically.

To plot signal s, just issue the following command :

view(s);

9

Lets find a good choice for a delay-time by using the first minimum of the auto mutual information
function

a = amutual(s,32);
view(a);

the first minimum of the auto mutual information can be found at four. Now we need to know the
minimal embedding dimension for the colpitts signal. We use Cao’s method with a delay time of four,
a maximal dimension of eight, three nearest neighbors and 1000 reference points.

c = cao(s,8,4,3,1000);
view(c);

There’s a kink in the graph produced by Cao’s method at three. So now do a time-delay reconstruction
of the Colpitts signal with embedding dimension 3 and delay 4.

10

e = embed(s, 3, 4);
view(e);

What’s the correlation dimension of the reconstructed data set ? First let’s take a look at the scaling
of the correlation sum versus the radius (as log-log plot).

view(corrsum(e, -1, 0.05, 40, 32));

Next, we use the Takens estimator for the correlation dimension. It needs basically the same input
arguments as the function corrdim2.

>> takens_estimator(e, -1, 0.05, 40)

ans =

1.9483

And what about it’s largest Lyapunov exponent ? To estimate the largest Lyapunov exponent, we
take a look at the scaling of the prediction error.

view(largelyap(e, 1000, 300, 40, 2));

11

12

Chapter 4

Nearest Neighbors Searching

An integral part of a majority of methods for nonlinear time series analysis is searching for nearest
neighbors. The perfomance of these methods depends strongly of the perfomance of the employed
nearest neighbor algorithm. Thus, choosing an efficient nearest neighbor algorithm should be done
very carefully.

4.1 Definition

Definition : A set P of data points in D-dimensional space is given. Then we define the nearest
neighbor to some reference point q (also called query point) to be the point of data set P that has
the smallest distance to q (we don’t issue the problem of ambiguity at this point).The more general
task of finding more than one nearest neighbor is called k nearest neighbors problem. In general, the
reference point q is an arbitrarily located point, but it is also possible that q is itself a member of
data set P (as illustrated in the figure, where five neighbors to q (excluding self match) are found).

4.2 Approximate nearest neighbors searching

Approximate nearest neighbors algorithms report neighbors to the query point q with distances pos-
sibly greater than the true nearest neighbors distances. The maximal allowed relative error epsilon is
given as a parameter to the algorithm. For epsilon=0, the approximate search returns the true (exact)
nearest neighbor(s).

Computing exact nearest neighbors for data set with fractal dimension much higher than 6 seems to
be a very time-consuming task. Few algorithms seem to perform significantly better than a brute-
force computation of all distances. However, it has been shown that by computing nearest neighbors
approximately, it is possible to achieve significantly faster execution times with relatively small actual
errors in the reported distances.

13

4.3 Range searching

In the task of range searching, we ask for all points of data set P that have distance r or less from the
query point q. Sometimes range searching is called a fixed size approach, while k nearest neighbors
searching is called a fixed mass approach.

4.4 Matlab mex-functions

4.4.1 nn prepare

nn prepare does the preprocessing for a given data set pointset. The returned data structure atria
contains preprocessing information that is necessary to use nn search or range search.

Preprocessing and searching is divided into different mex-files to give the user the possibility to re-
use the preprocessing data (contained in atria) when doing multiple searches on the same point set.
However, as soon as the underlying point set is changed or modified, one has to recompute atria for
the changed point set.

Syntax:

• atria = nn_prepare(pointset)

• atria = nn_prepare(pointset, metric)

• atria = nn_prepare(pointset, metric, clustersize)

Input arguments:

• pointset - a N by D double matrix containing the coordinates of the point set, organized as N
points of dimension D

• metric - (optional) either ’euclidian’ or ’maximum’ (default is ’euclidian’)

• clustersize - (optional) threshold for clustering algorithm, defaults to 64

4.4.2 nn search

nn search does exact or approximate k-nearest neighbor queries to one or more query points. These
query points can be given explicitly or taken from the data set of points (see below).

Before one can use nn search, one has to call nn prepare to compute the preprocessing information.
However, as long as the input point set isn’t modified, the preprocessing information is valid and can
be re-used for multiple calls to nn search or range search.

Syntax:

14

• [index, distance] = nn_search(pointset, atria, query_points, k)

• [index, distance] = nn_search(pointset, atria, query_points, k, epsilon)

• [index, distance] = nn_search(pointset, atria, query_indices, k, exclude)

• [index, distance] = nn_search(pointset, atria, query_indices, k,
exclude, epsilon)

Input arguments:

• pointset - a N by D double matrix containing the coordinates of the point set, organized as N
points of dimension D

• atria - output of nn prepare for pointset

• query points - a R by D double matrix containing the coordinates of the query points, orga-
nized as R points of dimension D

• query indices - query points are taken out of the pointset, query indices is a vector of length
R which contains the indices of the query points (indices may vary from 1 to N)

• k - number of nearest neighbors to compute

• epsilon - (optional) relative error for approximate nearest neighbors queries, defaults to 0 (=
exact search)

• exclude - in case the query points are taken out of the pointset, exclude specifies a range of
indices which are omitted from search. For example if the index of the query point is 124 and
exclude is set to 3, points with indices 121 to 127 are omitted from search. Using exclude = 0
means: exclude self-matches

Output arguments:

• index - a matrix of size R by k which contains the indices of the nearest neighbors. Each row
of index contains k indices of the nearest neighbors to the corresponding query point.

• distance - a matrix of size R by k which contains the distances of the nearest neighbors to the
corresponding query points, sorted in increasing order.

4.4.3 range search

The routine range search does a range search to one or more query points. These query points can
be given explicitly or taken from the data set of points (see below).

Before one can use range search, one has to call nn prepare to compute the preprocessing informa-
tion. However, as long as the input point set isn’t modified, the preprocessing information is valid
and can be re-used for multiple calls to nn search or range search.

Syntax:

• [count, neighbors] = range_search(pointset, atria, query_points, r)

• [count, neighbors] = range_search(pointset, atria, query_indices, r, exclude)

Input arguments:

• pointset - a N by D double matrix containing the coordinates of the point set, organized as N
points of dimension D

15

• query points - a R by D double matrix containing the coordinates of the query points, orga-
nized as R points of dimension D

• query indices - query points are taken out of the pointset, query indices is a vector of length
R which contains the indices of the query points

• r - range or search radius (r > 0)

• exclude - in case the query points are taken out of the pointset, exclude specifies a range of
indices which are omitted from search. For example if the index of the query point is 124 and
exclude is set to 3, points with indices 121 to 127 are omitted from search. Using exclude = 0
means: exclude self-matches

Output arguments:

• count - a vector of length R contains the number of points within distance r to the corresponding
query point

• neighbors - a Matlab cell structure of size R by 2 which contains vectors of indices and vectors
of distances to the neighbors for each given query point. This output argument can not be stored
in a standard Matlab matrix because the number of neighbors within distance r is not the same
for all query points. The vectors if indices and distances for one query point have exactly the
length that is given in count. The values in the distances vectors are not sorted.

4.5 Example session

% create a 3-dimensional data set with 100000 points

pointset = rand(100000, 3);

% do the preprocessing for this point set

atria = nn_prepare(pointset, ’euclidian’);

% now search for 2 (exact) nearest neighbors, using points 1 to
% 10 as query points, excluding self-matches

[index, distance] = nn_search(pointset, atria, 1:10, 2, 0)

index =

5618 96574
38209 84549
54991 60397
38429 59732
4114 76991

72121 452
13678 59332
26022 16718
86042 38436
24830 44434

distance =

16

0.0101 0.0175
0.0078 0.0134
0.0132 0.0167
0.0050 0.0223
0.0087 0.0097
0.0124 0.0189
0.0129 0.0168
0.0046 0.0110
0.0101 0.0103
0.0156 0.0177

% now do a range search for radius 0.0224, using points 1 to 10 as
% query points, excluding self-matches

[count, neighbors] = range_search(pointset, atria, 1:10, 0.0224, 0)

count =

4
10
7
2
5
6
2
4
7
5

neighbors =

[1x4 double] [1x4 double]
[1x10 double] [1x10 double]
[1x7 double] [1x7 double]
[1x2 double] [1x2 double]
[1x5 double] [1x5 double]
[1x6 double] [1x6 double]
[1x2 double] [1x2 double]
[1x4 double] [1x4 double]
[1x7 double] [1x7 double]
[1x5 double] [1x5 double]

% let’s see the indices of the points that are within range to the first query point

neighbors{1,1}

ans =

56921 97100 96574 5618

% let’s see the corresponding distances of the points that are
% within range to the first query point

neighbors{1,2}

17

ans =

0.0176 0.0186 0.0175 0.0101

18

Chapter 5

Handling the Graphical User
Interface

With the Graphical User Interface (GUI) most of TSTOOLs methods are available without coping
with the command line syntax of every function.

To invoke the GUI simply type tstool at the matlab command prompt. If you invoke the GUI for
the first time, you get informed that the GUI will generate a directory for temporary files. This will
reside at OpenTSTOOL/datafiles on Windows systems and at ~/.tstool on Unix systems.

First of all, how does the GUI looks like?

There are three parts:

• Filelist

• Figure

• Menubar

5.1 Filelist

Every loaded or generated signal shows its name in an own line, they arranged hierarchicaly. The
data of the signals is stored in seperated files in the directory generated at the first run.

To process a special method, click on one of the signals in the filelist an choose the method from the
menubar.

19

5.2 Figure

This figure can show you the signal you have choosen from the filelist. Normaly this feature is switched
off because of the time consumption especialy for large signals. To switch on this feature choose the
menu item Option-Instant View-Small Window.

5.3 Menus

5.3.1 Signal

All menu items in this menu have something to do with the filelist and the storage of the signals.

• Load

This menu item simply loads data into the GUI (more precise: load a signal and save it to the
temporary data directory). A line in the fileview will be added with its filename.

• Save

Write the marked signal in the fileview to disk.

• Import file from

Generate a signal from foreign formats like ASCII, Matlab Vector, Soundfiles etc. See signal
class constructor reference (6.20.3.66) for more information.

• Export file from

Write the marked signal in the fileview to disk in a foreign format. See signal/write reference
(6.20.3.83) for more information.

• Generate

This menu item can generate signals. See mex/chaosys reference (6.6).

• Audio playback

Plays a scalar signal as audio with the matlab function soundsc. If there is no sampling rate
set in the signal 8KHz will be used.

• Rescan

Normally all files with the correct extension in the temporary directory are displayed in the
filelist. For some reason it is possible that a signal is displayed in the filelist but doesnt exist (e.
g. an other process deleted this file) or some files missing in the filelist (e. g. if you simply copy
a signal file in the temporary directory without using the Load menu item). In such situation
use the Rescan menu item to let TSTOOL look up all files again correctly. This can take some
time on slow machines or large signal files. Simply restarting the GUI will not make a rescan!

• Remove entry

If you want to remove a filelist entry use this menu item or simply type Ctrl-d. The selected
filelist entry will disappear and the corresponding temporary file will be deleted.

• Show

A signal stores many information about the data. This information can be displayed by this
menu item.

• Edit

– Desired type of plot

Here you can choose the type of plot TSTOOL should use for your signal. See signal/view
reference (6.20.3.82) for additional information.

20

– Descriptive parameters

– Axes labels

– Comment text

5.3.2 Methods I

In this menu all methods with scalar input are grouped. Most of this methods invokes the underlying
TSTOOL-function directly and do not need addition explanations. To enter the parameters a dialog
box will be opened.

For some parameters there is a checkbox at the right side named ’in units’. Normally this parameter
is entered in the units of samples. When you switch on the checkbox you can also enter this parameters
in units of the first axis.

• Reconstruction

– Time-Delay vectors

see signal/embed (6.20.3.21)

– Minimum Embedding Dimension (Cao’s)

see signal/cao (6.20.3.9)

• Spectral

– FFT

see signal/fft (6.20.3.22)

– Periodogram

see signal/spec (6.20.3.68)

– Spectrogram

see signal/spec2 (6.20.3.69)

– Scalogram

see signal/scalogram (6.20.3.62)

• Derivative/Integration

– Integrate

see signal/int (6.20.3.33)

– Differentiate

see signal/diff (6.20.3.18)

• Correlation and more

– Auto Correlation

see signal/acf (6.20.3.2)

– Auto Mutual Information

see signal/amutual (6.20.3.4)

• Filter

– Moving Average

see signal/movav (6.20.3.44)

– Median Filter

see signal/medianfilt (6.20.3.40)

– Multiresolution Analysis

see signal/mutlires (6.20.3.45)

21

• Surrogate Data Generation

– Permutation of Samples

see signal/surrogate3 (6.20.3.74)

– Theiler Alg. I

see signal/surrogate1 (6.20.3.72)

– Theiler Alg. II

see signal/surrogate2 (6.20.3.73)

• Surrogate Data Test

– Time Reversibility

see signal/trev (6.20.3.80)

– Higher order moments

see signal/tc3 (6.20.3.78)

– Function

see signal/surrogate test (6.20.3.75)

• Prediction

– Local Constant

see signal/predict2 (6.20.3.55)

• Misc

– Squared Magnitude

see signal/power (6.20.3.53)

– Absolute Value

see signal/abs (6.20.3.1)

– Decibel Value

see signal/db (6.20.3.16)

– Histogram

see signal/histo (6.20.3.30)

5.3.3 Methods II

In this menu all methods with multivariate input signals are grouped.

• Decompositions

– PCA (Karhunen-Loeve)

see signal/pca (6.20.3.49)

– Archetypal Analysis

see signal/arch (6.20.3.7)

• Lyapunov Exponents

– Largest

see signal/largelyap (6.20.3.36)

• Fractal Dimensions

– Box Counting Approach

22

∗ Capacity Dimension D0

see signal/boxdim (6.20.3.8)
∗ Information dimension D1

see signal/infodim (6.20.3.31)
∗ Correlation dimension D2

see signal/corrdim (6.20.3.11)

– Correlation Sum Approach

∗ Correlation Sum D2 (GPA like approach)

see signal/corrsum (6.20.3.12)
∗ Correlation dimension D2 (fixed number of pairs)

see signal/corrsum2 (6.20.3.13)
∗ Takens Estimator D2

see signal/takens estimator (6.20.3.77)

– Nearest Neighbor Algorithms

∗ Information dimension D1 (NNK)

see signal/infodim2 (6.20.3.32)
∗ Fractal dimension spectrum

see signal/fracdims (6.20.3.27)

• Periodicity

– Return Times

see signal/return time (6.20.3.58)

– Reciprocal local density

see signal/localdensity (6.20.3.38)

• Modeling

– Polynom selection

see util/pauswahl

• Poincare Section

see signal/poincare (6.20.3.52)

• Prediction

– Local Constant

see signal/predict (6.20.3.54)

5.3.4 Utilities

Some useful information about the signals can be retrieved by functions in this menu.

• Minimum

see signal/min (6.20.3.42)

• Maximum

see signal/max (6.20.3.39)

• First Local Minimum

see signal/firstmin (6.20.3.25)

• First Local Maximum

see signal/firstmax (6.20.3.24)

23

• First Zero Crossing

see signal/firstzero (6.20.3.26)

• Mean

see mean (Matlab reference)

• Standard Deviation

see std (Matlab reference)

• RMS

root mean square

• Compare two Signals

Only the data values are compared. See core/compare (6.22.3.3)

5.3.5 Modify

• Cut

see signal/cut (6.20.3.15)

• Swap Dimensions

see signal/swap (6.20.3.76)

• Reverse

see signal/reverse (6.20.3.59)

• Interpolations

– Cubic Spline

see signal/upsample (6.20.3.81)

– Akima Spline

see signal/upsample (6.20.3.81)

– FFT Based

see signal/upsample (6.20.3.81)

• Normalize

– Center around Zero

see signal/center (6.20.3.10)

– Scale by Factor

see signal/scale (6.20.3.61)

– Fit to Interval

see signal/norm1 (6.20.3.47)

– Center and Divide by STD

see signal/norm2 (6.20.3.48)

– Remove Trend

see signal/trend (6.20.3.79)

– Transform to Rang Values

see signal/rang (6.20.3.56)

• Split Multichannel Signal

Splits up a n-channel signal in n signals by using signal/cut (6.20.3.15).

24

• Add two Signals

see signal/plus (6.20.3.51)

• Difference of two Signals

see signal/minus (6.20.3.43)

• Merge two Signals

see signal/merge (6.20.3.41)

5.3.6 Macro

TSTOOL records the processed commands for every signal. So TSTOOL knows how this signal is
modified and can generate a matlab script with processes the same commands to arbitrary signal.

The generated scripts will be saved in the directory scripts inside the directory for temporary files.

• Create Macro from Signal

Generate script named macro.m.

• Show/Edit Macro

• Rename Macro

Renamed macros will be displayed at the end of this menu after restart of TSTOOL.

• Apply Macro to Signal

Invoke macro.m with the selected signal.

• Apply Macro to all

Invoke macro.m with every loaded signal.

After the seperation line a list of all *.m-Files in the directory scripts is shown. Selecting one of
these menus apply the corresponding script to the actual selected signal.

5.3.7 Options

Here some settings can be edited. All these settings will be saved in the file tstool.mat in the
temporary data directory.

• Parameters

– Reconstruction Parameters

The default settings for the Reconstruction dialog box can be edited here (see menu Me-

thods I - Reconstruction - Time Delay Vectors 5.3.2)
– Default Window Type

Used by FFT etc.

• File and Directory Options

The actual search directory for Load and Save can be edited here. Also the default file extension
can be altered.

• Instant View

– Small Window

If you switch on this feature, the small figure at the right of the filelist will show you the
selected signal immediatly after selection.

– Large Window

Every time a new signal is generate (e.g. applying a command to an existing signal) e new
figure window will be opened displaying it.

25

5.3.8 Help

The menu Usage will start your web browser with the HTML-Version of this manual shipped with
the OpenTSTOOL distribution. Run ’help docopt’ at the matlab command prompt to configure
your web brower correctly.

After the seperation line you can view the matlab command line help for every method of the signal
class. The same information is in the HTML- and in the PDF-Version of the manual in class reference
section 6.20.

5.3.9 View

This menu invokes a new figure window viewing the selected signal using the signal/view command
(6.20.3.82). You can also simply type Ctrl-v.

26

Chapter 6

Mex-Function Reference

Parts of TSTOOL’s functionality are coded in mex-files. All TSTOOL mex-files are located in the
directory tstoolbox/mex. It is possible to use these mex-files independently of the full TSTOOL
installation.

6.1 akimaspline - Cubic spline interpolation using Akima
splines

Compared to Matlab’s built-in cubic spline, Akima spline interpolation better copes with discontinui-
ties in a time series.

Syntax:

• yy = akimaspline(x,y,xx)

Input arguments:

• x, y - vectors describing knot data, see Matlab’s original spline function

• xx - vector of positions at which the spline is evaluated

Output arguments:

• yy - evaluated function values

Example:

x = 1:100;
y = floor((x + rand(1, 100))/ pi);
xx = 1:0.1:100;
yy = akimaspline(x, y, xx);
plot(x,y, xx, yy, ’r’)

27

6.2 amutual - compute auto mutual information function

Fast, but crude auto mutual information of a scalar timeseries for the timelags from zero to maxtau.
The input time series should be much longer than maximal timelag maxtau. The algorithm uses
equidistant histogram boxes, so results are bad in a mathematical sense. However, a fast algorithm
based on ternary search trees to store only nonempty boxes is used.

Syntax:

• a = amutual(ts, maxtau, partitions)

Input arguments:

• ts - vector holding time series data

• maxtau - maximal time lag

• partitions - number of partitions for the one-dimensional histogram

Output arguments:

• a - vector of length maxtau+1, holding auto mutual information

6.3 baker - Generate Baker time-series

Generate time-series from the iterated Baker map [150].

Syntax:

• x = baker(length, [eta l1 l2 x0 y0])

Input arguments:

• length - number of samples to generate

• [eta l1 l2 x0 y0] - vector of parameters and initial conditions

Output arguments:

• x - time series

Example:

x = baker(2000, [0.6 0.25 0.4 rand(1,1) rand(1,1)]);
plot(x(1:end-1,2), x(2:end,2), ’.’)

28

6.4 boxcount - Classical boxcounting algorithm

boxcount is a fast algorithm that partitions a data set of points into equally spaced and sized boxes.
The algorithm is based on Robert Sedgewick’s Ternary Search Trees [149] which offer a fast and
efficient way to create and search a multidimensional histogram. Empty boxes require no storage
space, therefore the maximum number of boxes (and memory) used can not exceed the number of
points in the data set, regardless of the data set’s dimension and the number of partitions per axis.

During processing, data values are scaled to be within the range [0,1]. All columns of the input matrix
are scaled by the same factor, so no skewing is introduced into the point set.

Syntax:

• [a,b,c] = boxcount(point set, partitions)

Input arguments:

• pointset - a N by D double matrix containing the coordinates of the point set, organized as N
points of dimension D. D is limited to 128.

• partitions - number of partitions per axis, limited to 16384. For convenience, if a vector is
given, boxcount will iterate over all values of this vector.

Output arguments:

• a - vector of size D with: log2(sum(Number of nonempty boxes))

• b - vector of size D with: sum(p * log2(p)) , where p is the relative frequency of points falling
into a box

• c - vector of size D with: log2(sum(p*p)), where p is the relative frequency of points falling into
a box

Example:

p = rand(50000, 4);
p = p - min(min(p));
p = p ./ max(max(p));
[a,b,c] = boxcount(p, 16)

6.5 cao - Determine minimum embedding dimension by Cao’s
method

This mex-file applies Cao’s method [38] to the input data set. If the data set contains points of
dimension D, it computes E and E* for a data set of dimension 1 (taken from the first column of
the input data set), then for a data set of dimension 2 (taken from the first two columns) up to a
dimension of D. Optionally, this algorithm extends Cao’s method in a straightforward manner to use
more than one nearest neighbors.

Syntax:

• [E, E*] = cao(pointset, query indices, k)

Input arguments:

29

• pointset - a N by D double matrix containing the coordinates of the point set, organized as N
points of dimension D

• query indices - query points are taken out of the pointset, query indices is a vector of length
R which contains the indices of the query points (indices may vary from 1 to N)

• k - number of nearest neighbors to compute. Cao’s method can be extended to use more than
only the first nearest neighbor (k=1).

Output arguments:

• E and E* are vectors of size D. Please refer the Cao’s article [38] for a precise description of their
meaning.

6.6 chaosys - integrate dynamical system given by a set of
ordinary differential equations

chaosys gives the user the possibility to compute time series data for a couple of dynamical systems,
among which are Lorenz, Chua, Roessler etc. This routine is not meant as a replacement for Matlab’s
suite of functions for solving ODEs, but as a fast way to generate some data sets to evaluate the
processing capabilities of TSTOOL. The integration is done by an ODE solver using an Adams Pece
scheme with local extrapolation [151]. It is at least faster than Matlab’s native ODE solver. However,
it is not possible to extend the set of systems without recompiling chaosys.

Syntax:

• x = chaosys(length, stepwidth, initial conditions, mode, parameters)

Input arguments:

• length - number of samples to generate

• stepwidth - integration step size

• initial conditions - vector of initial conditions

• mode:

– 0: Lorenz

– 1: Generalized Chua : Double Scroll

– 2: Generalized Chua : Five Scroll

– 3: Duffing

– 4: Roessler

– 5: Toda Oscillator

– 6: Van der Pol Oscillator

– 7: Pendulum

For an exact definition of the ODE systems, please refer to this header file.

• parameters - vector of systems parameters. The order of the parameters is exactly the same as
in the constructors of the DGL subclasses in the above file.

Output arguments:

30

• x contains the output of the integration, organized as matrix of size samples by dim, where dim
is the number of ODEs that define the system

Example:

x = chaosys(20000, 0.025, [0.1 -0.1 0.02], 0);
plot(x(:,1));

Definitions of the ODEs:
The parameters of the odes are a vector of [a,b,...].

Lorenz:

dy1

dt
= a(y1 − y2)

dy2

dt
= by1 − y2 − y1y3

dy3

dt
= y1y2 + cy3

Generalized Chua:

dy1

dt
= a(y1 − by2)

dy2

dt
= by1 − y2 + y3

dy3

dt
= −cy2

Duffing:

dy1

dt
= y2

dy2

dt
= −y1 − y3

1 − by2 + a cos y3

dy3

dt
= c

Rössler:

dy1

dt
= −y2 − y3

dy2

dt
= −y1 + ay2

dy3

dt
= b+ y3(y1 − c)

Toda oscillator:

dy1

dt
= 1 + a sin(bt)− by2 − exp y1

dy2

dt
= y1

van der Pol oscillator:

dy1

dt
= a sin(bt)− c(by2

2 − 1)− d2y1

dy2

dt
= y1

31

pendulum:

dy1

dt
= a sin(bt)− cby2 − d sin y1

dy2

dt
= y1

6.7 corrsum - Computation of the correlation sum

The topics correlation sum and correlation dimension estimation can also be found here.

Syntax:

• [c, d] = corrsum(pointset, query indices, range, exclude)

• [c, d] = corrsum(pointset, query indices, range, exclude, bins)

• [c, d] = corrsum(atria, pointset, query indices, range, exclude)

• [c, d] = corrsum(atria, pointset, query indices, range, exclude, bins)

Input arguments:

• atria - output of nn prepare for pointset (optional) (cf. Section 6.13)

• pointset - a N by D double matrix containing the coordinates of the point set, organized as N
points of dimension D

• query indices - query points are taken out of the pointset, query indices is a vector of length
R which contains the indices of the query points (indices may vary from 1 to N)

• range - search range, may be given in one of two ways

– If only a single value is given, this value is taken as maximal search radius relative to the
attractor diameter (0 < relative range < 1). The minimal search radius is determined
automatically be searching for the minimal interpoint distance in the data set.

– If a vector of length two is given, the values are interpreted as absolut minimal and maximal
search radius.

• exclude - in case the query points are taken out of the pointset, exclude specifies a range of
indices which are omitted from search. For example if the index of the query point is 124 and
exclude is set to 3, points with indices 121 to 127 are omitted from search. Using exclude = 0
means: exclude self-matches

• bins - number of distance values at which the correlation sum is evaluated, defaults to 32

Output arguments:

• c - vector of correlation sums, length(c) = bins

• d - vector of the corresponding distances at which the correlation sums (stored in c) were
computed. d is exponentially spaced, length(c) = bins

Example:

x = chaosys(25000, 0.025, [0.1 -0.1 0.02], 0); % generate data from Lorenz system
x = x(5001:end,:); % discard first 5000 samples due to transient
% now compute correlation sum up to five percent of attractor diameter
[c,d] = corrsum(x, randref(1,20000, 1000), 0.05, 0);
loglog(d,c) % and show the result as log-log plot

32

6.8 corrsum2 - Computation of the correlation sum

This is an extended version of the correlation sum algorithm. It tries to accelerate the computation
of the correlation sum by using a different number of reference points at each length scale. For large
length scales, only a few number of reference points will be used since for this scale, quite a lot of
neighbors will fall within this range (and also the search time will be high). The smaller the length
scale, the more reference points are used. The algorithm tries to keep the number of pairs found
within each range roughly constant at Npairs to ensure a good statistic even for the smallest length
scales. However, the number of reference points actually used may be limited to be within [Nref min
Nref max] to give at least some control to the user. All reference points are chosen randomly from
the data set without reoccurences of the same index.

Syntax:

• [c, d, e, f, g] = corrsum(pointset, Npairs, range, exclude)

• [c, d, e, f, g] = corrsum(pointset, Npairs, range, exclude, bins)

• [c, d, e, f, g] = corrsum(pointset, Npairs, range, exclude, bins, opt flag)

• [c, d, e, f, g] = corrsum(atria, pointset, Npairs, range, exclude)

• [c, d, e, f, g] = corrsum(atria, pointset, Npairs, range, exclude, bins)

• [c, d, e, f, g] = corrsum(atria, pointset, Npairs, range, exclude, bins,
opt flag)

Input arguments:

• atria - output of nn prepare for pointset (optional) (cf. Section 6.13)

• pointset - a N by D double matrix containing the coordinates of the point set, organized as N
points of dimension D

• Npairs - Number of pairs to find within each length scale. The algorithm will adapt the number
of reference points while computing the correlation sum. Reference points are chosen randomly
from the pointset. Optionally, a vector of the form [Npairs Nref min Nref max] may be given.
For no length scale less than Nref min reference points will be used. Additionally, not more than
Nref max reference points will be used at all.

• range - search range, may be given in one of two ways

– If only a single value is given, this value is taken as maximal search radius relative to
attractor diameter (0 < relative range < 1). The minimal search radius is determined
automatically be searching for the minimal interpoint distance in the data set.

– If a vector of length two is given, the values are interpreted as absolut minimal and maximal
search radius.

• exclude - in case the query points are taken out of the pointset, exclude specifies a range of
indices which are omitted from search. E.g. if the index of the query point is 124 and exclude is
set to 3, points with indices 121 to 127 are omitted from search. exclude = 0 means : exclude
self-matches

• bins - number of distance values at which the correlation sum is evaluated, defaults to 32

• opt flag - optional flag to control the algorithm:

– 0 - Use euclidian distance, be verbose, don’t allow to count a pair of points twice

– 1 - Use maximum distance, be verbose, don’t allow to count a pair of points twice

33

– 2 - Use euclidian distance, be verbose, allow to count a pair of points twice

– 3 - Use maximum distance, be verbose, allow to count a pair of points twice

– 4 - Use euclidian distance, be silent, don’t allow to count a pair of points twice

– 5 - Use maximum distance, be silent, don’t allow to count a pair of points twice

– 6 - Use euclidian distance, be silent, allow to count a pair of points twice

– 7 - Use maximum distance, be silent, allow to count a pair of points twice

If the preprocessing output atria is given, the type of metric used to create this overrides the
settings by opt flag.

Output arguments:

• c - vector of correlation sums, length(c) = bins

• d - vector of the corresponding distances at which the correlation sums (stored in c) where
computed. d is exponentially spaced, length(c) = bins

• e - vector of the number of pairs found within this range, length(e) = bins

• f - vector of the number of total pairs that were tested, length(f) = bins

• g - vector containing the indices of the reference points actually used by the algorithm.

Example:

x = chaosys(25000, 0.025, [0.1 -0.1 0.02], 0);
x = x(5001:end,:); % discard first 5000 samples due to transient
% now compute correlation sum up to five percent of attractor diameter
[c,d] = corrsum2(x,[1000 100 2000], 0.05, 200);
loglog(d,c) % and show the result as log-log plot

6.9 fnearneigh - Fast nearest neighbor search

fnearneigh is based on the advanced triangle inequality algorithm ATRIA. However, it does not
support approximate queries. The functionality of fnearneigh is almost the same as that of nn search
(cf. Section 6.14), so fnearneigh might become obsolete in future versions of TSTOOL.

Syntax:

• [index, distance] = fnearneigh(pointset, query points, k)

• [index, distance] = fnearneigh(pointset, query indices, k, exclude)

Input arguments:

• pointset - a N by D double matrix containing the coordinates of the point set, organized as N
points of dimension D

• query points - a R by D double matrix containing the coordinates of the query points, organized
as R points of dimension D

• query indices - query points are taken out of the pointset, query indices is a vector of length
R which contains the indices of the query points (indices may vary from 1 to N)

• k - number of nearest neighbors to be determined

34

• exclude - in case the query points are taken out of the pointset, exclude specifies a range of
indices which are omitted from search. For example if the index of the query point is 124 and
exclude is set to 3, points with indices 121 to 127 are omitted from search. Using exclude = 0
means: exclude self-matches

Output arguments:

• index - a matrix of size R by k which contains the indices of the nearest neighbors. Each row of
index contains k indices of the nearest neighbors to the corresponding query point.

• distance - a matrix of size R by k which contains the distances of the nearest neighbors to the
corresponding query points, sorted in increasing order.

6.10 gendimest - Estimate generalized dimension spectrum

The Renyi dimension spectrum of a points set can be estimated using information about the dis-
tribution of the interpoint distances. Since we are interested in the scaling behaviour of the Renyi
information for small distances, we don’t need to compute all interpoint distances, the distances to k
nearest neighbors for each reference point are sufficient [150].

Robust estimation is used instead of mean square error fitting.

Syntax:

• [dimensions, moments] = gendimest(dists, gammas, kmin low, kmin high, kmax)

Input arguments:

• dists - a matrix of size R by k which contains distances from reference points to their k nearest
neighbors, sorted in increasing order. This matrix can be obtained by calling nn search (cf.
Section 6.14) or fnearneigh (cf. Section 6.9) on the point set whose dimension spectrum is to be
investigated.

• gammas - vector of the moment orders

• kmin low - first kmin, 1 ≤ kmin low

• kmin high - last kmin, kmin low ≤ kmin high < kmax

• kmax - highest neigbor order up to which, kmax ≤ k

Output arguments:

• dimensions - matrix of size length(gammas) by kmin upper-kmin lower+1, holding the dimen-
sion estimates

• moments (optional) - matrix of size k by length(gammas), storing the computed moments of the
neigbor distances

Example:

x = chaosys(25000, 0.025, [0.1 -0.1 0.02], 0); % generate data from Lorenz system
x = x(5001:end,:); % discard first 5000 samples due to transient
[nn, dist] = fnearneigh(x, randref(1, 20000, 1000), 128, 0);
gammas = -5:0.5:5;
gedims = gendimest(dist, gammas, 8, 8, 128);
plot(1-gammas./gedims’, gedims)
xlabel(’q’);ylabel(’D_q’);title(’Renyi dimension’)

35

6.11 henon - Generate henon time-series

Generate time series by iterating the henon map.

Syntax:

• x = henon(length, [a b xo yo])

Input arguments:

• length - number of samples to generate

• [a b xo yo] - vector of parameters and initial conditions

Output arguments:

• x - vector of size D

Example:

x = henon(500, [-1.4 0.3 0.2 0.12]);
plot(x(:,1), x(:,2), ’.’);

6.12 largelyap - Compute separation of nearby trajectories

largelyap is an algorithm very similar to the Wolf algorithm [90] , it computes the average exponential
growth of the distance of neighboring orbits via the prediction error. The increase of the prediction
error vs the prediction time allows an estimation of the largest lyapunov exponent.

Syntax:

• x = largelyap(pointset, query indices, taumax, k exclude)

• x = largelyap(atria, pointset, query indices, taumax, k exclude)

Input arguments:

• atria - output of nn prepare for pointset (optional) (cf. Section 6.13)

• pointset - a N by D double matrix containing the coordinates of the point set, organized as N
points of dimension D

• query indices - query points are taken out of the pointset, query indices is a vector of length
R which contains the indices of the query points (indices may vary from 1 to N)

• taumax - maximal time shift

• k - number of nearest neighbors to compute

• exclude - in case the query points are taken out of the pointset, exclude specifies a range of
indices which are omitted from search. For example if the index of the query point is 124 and
exclude is set to 3, points with indices 121 to 127 are omitted from search. Using exclude = 0
means: exclude self-matches

Output arguments:

• x - vector of length taumax+1, x(tau) = 1/Nref * sum(log2(dist(reference point + tau, nearest
neighbor + tau)/dist(reference point, nearest neighbor)))
[146]

36

6.13 nn prepare - Do nearest neighbor preprocessing

The intention of this mex-file was to reduce the computational overhead of preprocessing for nearest
neighbor or range searching. With nn prepare it is possible to do the preprocessing for a given point
set only once and save the created tree structure into a Matlab variable. This Matlab variable, usually
called atria, can then be used for repeated neighbor searches on the same point set. Most mex-files
that rely on nearest neighbor or range search offer the possibility to use this variable atria as optional
input argument. However, if the underlying point set is altered in any way, the proprocessing has to
be repeated for the new point set. If the preprocessing output does not belong to the given point set,
wrong results or program termination may occur.

Syntax:

• atria = nn prepare(pointset)

• atria = nn prepare(pointset, metric)

• atria = nn prepare(pointset, metric, clustersize)

Input arguments:

• pointset - a N by D double matrix containing the coordinates of the point set, organized as N
points of dimension D

• metric - (optional) either ’euclidian’ or ’maximum’ (default is ’euclidian’)

• clustersize - (optional) threshold for clustering algorithm, defaults to 64

Example:

pointset = rand(40000, 3);
atria = nn_prepare(pointset);
[c, d] = corrsum(atria, pointset, 1:17:40000, 0.05, 0);
plot(log(d), log(c))
D = takens_estimator(atria, pointset, 1:17:40000, 0.05, 0)

6.14 nn search

Syntax:

• [index, distance] = nn search(pointset, atria, query points, k)

• [index, distance] = nn search(pointset, atria, query points, k, epsilon)

• [index, distance] = nn search(pointset, atria, query indices, k, exclude)

• [index, distance] = nn search(pointset, atria, query indices, k, exclude,
epsilon)

Input arguments:

• pointset - a N by D double matrix containing the coordinates of the point set, organized as N
points of dimension D

• atria - output of (cf. Section 6.13) nn prepare for pointset

37

• query points - a R by D double matrix containing the coordinates of the query points, organized
as R points of dimension D

• query indices - query points are taken out of the pointset, query indices is a vector of length
R which contains the indices of the query points (indices may vary from 1 to N)

• k - number of nearest neighbors to be determined

• epsilon - (optional) relative error for approximate nearest neighbors queries, defaults to 0 (=
exact search)

• exclude - in case the query points are taken out of the pointset, exclude specifies a range of
indices which are omitted from search. For example if the index of the query point is 124 and
exclude is set to 3, points with indices 121 to 127 are omitted from search. Using exclude = 0
means: exclude self-matches

Output arguments:

• index - a matrix of size R by k which contains the indices of the nearest neighbors. Each row of
index contains k indices of the nearest neighbors to the corresponding query point.

• distance - a matrix of size R by k which contains the distances of the nearest neighbors to the
corresponding query points, sorted in increasing order.

6.15 predict

State space based prediction using nearest neighbors. The algorithms computes one or more nearest
neighbors to an initial state vector. The images of the nearest neighbors are used to estimate to image
of the initial state vector. The next iteration uses the previously computed image as new initial state
vector [145].

Syntax:

• x = predict(pointset, length, k, stepsize, mode)

Input arguments:

• pointset - a N by D double matrix containing the coordinates of the point set, organized as N
points of dimension D

• length - number of iterations (length of prediction)

• k - number of nearest neighbors

• stepsize - prediction stepsize, usually one

• mode - (optional) method to estimate image of initial state vector

– 0 - direct prediction, no weight is applied to neighbors

– 1 - direct prediction, biquadratic weight is applied to neighbors

– 2 - integrated prediction, no weight is applied to neighbors

– 3 - integrated prediction, biquadratic weight is applied to neighbors

Output arguments:

• x - data set as double matrix, size length by D

38

6.16 range search

Syntax:

• [count, neighbors] = range search(pointset, atria, query points, r)

• [count, neighbors] = range search(pointset, atria, query indices, r, exclude)

Input arguments:

• pointset - a N by D double matrix containing the coordinates of the point set, organized as N
points of dimension D

• atria - output of (cf. Section 6.13)nn prepare for pointset

• query points - a R by D double matrix containing the coordinates of the query points, organized
as R points of dimension D

• query indices - query points are taken out of the pointset, query indices is a vector of length
R which contains the indices of the query points

• r - range or search radius (r > 0)

• exclude - in case the query points are taken out of the pointset, exclude specifies a range of
indices which are omitted from search. For example if the index of the query point is 124 and
exclude is set to 3, points with indices 121 to 127 are omitted from search. Using exclude = 0
means: exclude self-matches

Output arguments:

• count - a vector of length R contains the number of points within distance r to the corresponding
query point

• neighbors - a Matlab cell structure of size R by 2 which contains vectors of indices and vectors
of distances to the neighbors for each given query point. This output argument can not be stored
in a standard Matlab matrix because the number of neighbors within distance r is not the same
for all query points. The vectors if indices and distances for one query point have exactly the
length that is given in count. The values in the distances vectors are not sorted..

6.17 return time

return time may be used to find hidden periodicity in multivariate data, e.g. embedded time series
data. It computes a histogram of return times. For any given reference point, return time calculates
the time span until the time series returns to that location in phase space (by means of nearest
neighbors). A histogram of these time spans is computed. Strong peaks in this histogram might be a
sign of periodicity in the data.

Syntax:

• r = return time(pointset, query indices, k, max time, exclude)

• r = return time(atria, pointset, query indices, k, max time, exclude)

Input arguments:

39

• atria - output of nn prepare for pointset (optional) (cf. Section 6.13)

• pointset - a N by D double matrix containing the coordinates of the point set, organized as N
points of dimension D

• query indices - query points are taken out of the pointset, query indices is a vector of length
R which contains the indices of the query points (indices may vary from 1 to N)

• k - number of nearest neighbors to be determined

• max time - integer scalar, gives an upper limit for return times that should be considered.

• exclude - in case the query points are taken out of the pointset, exclude specifies a range of
indices which are omitted from search. For example if the index of the query point is 124 and
exclude is set to 3, points with indices 121 to 127 are omitted from search. Using exclude = 0
means: exclude self-matches

Output arguments:

• r - vector of length max time, containing the histogram of return times

6.18 takens estimator

Syntax:

• D = takens estimator(pointset, query indices, relative range, exclude)

• D = takens estimator(atria, pointset, query indices, relative range, exclude)

Input arguments:

• atria - output of nn prepare for pointset (optional) (cf. Section 6.13)

• pointset - a N by D double matrix containing the coordinates of the point set, organized as N
points of dimension D

• query indices - query points are taken out of the pointset, query indices is a vector of length
R which contains the indices of the query points (indices may vary from 1 to N)

• relative range - search radius, relative to attractor diameter (0 < relative range < 1)

• exclude - in case the query points are taken out of the pointset, exclude specifies a range of
indices which are omitted from search. For examples if the index of the query point is 124 and
exclude is set to 3, points with indices 121 to 127 are omitted from search. Using exclude = 0
means: exclude self-matches

Output arguments:

• D - scalar value, estimation of correlation dimension

40

6.19 tentmap - Generate tentmap time-series

Generate samples of the generalized iterated tentmap.

Syntax:

• x = tentmap(length, [h e s x0])

Input arguments:

• length - number of samples to generate

• [h e s x0] - vector of parameters and initial conditions

Output arguments:

• x - time series

Example:

x = tentmap(500, [0 1 0.97 rand(1,1)]);
plot(x)
plot(x(1:end-1), x(2:end), ’.’)

41

6.20 Class signal

6.20.1 Overview

Class signal is TSTOOL’s main class. Objects of this type model real world signals. A signal does not
only store the pure sample values, it holds much more information like axes, units of sample values
or the axes units, and even more descriptive information like labels, command lines and a processing
history.

The majority of functions in the tstoolbox take a signal as input argument and return a processed
signal as output. This allows for combining or chaining of several processing steps in order to get the
desired output.

6.20.2 Attributes

• xaxes cellarray of at least one object of type achse

• core object of type core (cf. Section 6.22)

• description object of type description (cf. Section 6.21)

6.20.3 Member functions

6.20.3.1 abs

Syntax:

• abs(s)

Take absolut value of all data values of signal s. If sample values are complex, abs(s) returns the
complex modulus (magnitude) of each sample.

6.20.3.2 acf

Syntax:

• acf(s, len)

Input arguments:

• len -length of the fft (optional)

Autocorrelation function for real scalar signals, using fft (of length len). If len is ommited a default
value is calculated. The maximum of the calculated length is 128.

6.20.3.3 acp

Syntax:

• acp(s, tau, past, maxdelay, maxdim, nref)

Input arguments:

43

• tau - proper delay time for s

• past - number of samples to exclude before and after reference index (to avoid correlation effects)

• maxdelay - maximal delay (should be much smaller than the lenght of s) (optional)

• maxdim - maximal dimension to use (optional)

• nref - number of reference points (optional)

Auto crossprediction function for real scalar signals for increasing dimension. The default value for
maxdelay is 25% of the input signal’s length. The default for maxdim is 8 and for nref it is 10% of
the input signal’s length.

6.20.3.4 amutual

Syntax:

• amutual(s, maxtau, bins)

Input arguments:

• maxtau - maximal delay (should be much smaller than the lenght of s) (optional)

• bins - number of bins used for histogram calculation (optional)

Auto mutual information function for real scalar signals, can be used to determine a proper delay
time for time-delay reconstruction. The default value for maxtau is 25% of the input signal’s length.
The default number of bins is 128.

I =
∑

P (A,B) log2

P (A,B)
P (A)P (B)

6.20.3.5 amutual2

Syntax:

• amutual2(s, len)

Input arguments:

• len - maximal lag

Auto mutual information (average) function for real scalar signals using 128 equidistant partitions.

6.20.3.6 analyze

Syntax:

• analyze(s, maxdim)

Input arguments:

• maxdim - analyze will not use a dimension higher than this limit

Try to do a automatic analysis procedure of a time series. The time series is embedded using the first
zero of the auto mutual information function for the delay time.

44

6.20.3.7 arch

Syntax:

• [rs, archetypes]=arch(s, na, mode=’normalized’)

Input arguments:

• na - number of generated archetypes

• mode - mode can be one of the following : ’normalized’ , ’mean’, ’raw’ (optional)

Archetypal analysis of column orientated data set:

• each row of data is one ’observation’, e.g. the sample values of all channels in a multichannel
measurement at one point in time

• in mode ’normalized’ each column of data is centered by removing its mean and then normalized
by dividing through its standard deviation before the covariance matrix is calculated

• in mode ’mean’ only the mean of every column of data is removed

• in mode ’raw’ no preprocessing is applied to data

Default value for mode is ’normalized’.

6.20.3.8 boxdim

Syntax:

• rs = boxdim(s, bins)

Input arguments:

• s - data points (row vectors)

• bins - maximal number of partition per axis (optional)

Compute the boxcounting (capacity) dimension of a time-delay reconstructed timeseries s for dimen-
sions from 1 to D, where D is the dimension of the input vectors using boxcounting approach. The
default number of bins is 100.

6.20.3.9 cao

Syntax:

• [E1, E2] = cao(s, maxdim, tau, NNR, Nref)

Input arguments:

• s - scalar input signal

• maxdim - maximal dimension

• tau - delay time

• NNR - number of nearest neighbor to use

• Nref - number of reference points (-1 means: use all points)

Estimate minimum embedding dimension using Cao’s method.

The second output argument, E2, can be used to distinguish between deterministic and random data.

45

6.20.3.10 center

Syntax:

• center(s)

Center signal by removing it’s mean.

6.20.3.11 corrdim

Syntax:

• rs = corrdim(s, bins)

Input arguments:

• s - data points (row vectors)

• bins - maximal number of partition per axis (optional)

Compute the correlation dimension of a time-delay reconstructed timeseries s for dimensions from 1
to D, where D is the dimension of the input vectors using boxcounting approach. The default number
of bins is 100.

6.20.3.12 corrsum

Syntax:

• rs = corrsum(s, n, range, past, bins)

Input arguments:

• n - number of randomly chosen reference points (n == -1 means: use all points)

• range - maximal relative search radius (relative to attractor size) 0..1

• past - number of samples to exclude before and after each reference index

• bins - number of bins (optional)

Compute scaling of correlation sum for time-delay reconstructed timeseries s (Grassberger-Proccacia
Algorithm), using fast nearest neighbor search. Default number of bins is 20.

6.20.3.13 corrsum2

Syntax:

• rs = corrsum2(s, npairs, range, past, bins)

Input arguments:

• npairs - number of pairs per bins

• range - maximal relative search radius (relative to attractor size) 0..1

• past - number of samples to exclude before and after each reference index

• bins - number of bins (optional), defaults to 32

Compute scaling of correlation sum for time-delay reconstructed timeseries s (Grassberger-Proccacia
Algorithm), using fast nearest neighbor search.

46

6.20.3.14 crosscorrdim

Syntax:

• rs = crosscorrdim(s, s2, n, range, past, bins)

Input arguments:

• n - number of randomly chosen reference points (n == -1 means : use all points)

• range - maximal relative search radius (relative to size of data set s2) 0..1

• past - number of samples to exclude before and after each reference index

• bins - number of bins (optional)

Compute scaling of cross-correlation sum for time-delay reconstructed timeseries s against signal s2
(with same dimension as s), using fast nearest neighbor search. Reference points are taken out of
signal s, while neigbors are searched in s2. The default number of bins is 32.

6.20.3.15 cut

Syntax:

• rs = cut(s, dim, start, stop)

Input arguments:

• dim - dimension along which the signal is cutted

• start - position where to start the cut

• stop - position where to stop (optional)

Cut a part of the signal. If stop is ommited only the data at start is cutted.

6.20.3.16 db

Syntax:

• db(s, dbmin)

Compute decibel values of signal relative to a reference value that is determined by the signal’s yunit
values below dbmin are set to dbmin. If dbmin is ommited it is set to -120.

6.20.3.17 delaytime

Syntax:

• tau = delaytime(s, maxdelay, past)

Input arguments:

• maxdelay - maximal delay time

• past - ?

Compute optimal delaytime for a scalar timeseries with method of Parlitz and Wichard.

47

6.20.3.18 diff

Syntax:

• diff(s, nth)

Compute the nth numerical derivative along dimension 1. s has be to sampled equidistantly.

6.20.3.19 dimensions

Syntax:

• [bc,in,co] = dimensions(s, bins)

Input arguments:

• s - data points (row vectors)

• bins - maximal number of partition per axis, default is 100

Output arguments:

• bc - scaling of boxes with partititon sizes (log2− log2)

• in - scaling of information with partititon sizes (log2− log2)

• co - scaling of correlation with partititon sizes (log2− log2)

Compute boxcounting, information and correlation dimension of a time-delay reconstructed timeseries
s for dimensions from 1 to D, where D is the dimension of the input vectors using boxcounting approach.

Scale data to be within 0 and 1. Give a sortiment of (integer) partitionsizes with almost exponential
behaviour.

6.20.3.20 display

6.20.3.21 embed

Syntax:

• emb = embed(s, dim, delay, shift, windowtype)

Input arguments:

• dim - embedding dimension

• delay - time delay (optional)

• shift - shift for two sequent time delay vectors (optional)

• windowtype - type of window (optional)

Output arguments:

• emb - n by dim array, each row contains the coordinates of one point

Embeds signal s with embedding dimension dim and delay delay (in samples). s must be a scalar
time series. The default values for dim and delay are equal to one. The default value for windowtype
is ’Rect’, which is currently the only possible value.

48

6.20.3.22 fft

Syntax:

• f = fft(s)

Output arguments:

• f - n by 2 array, the first column contains the magnitudes, the second one the phases.

Fourier transform of scalar signal s.

6.20.3.23 filterbank

Syntax:

• filterbank(s, depth, filterlen)

Filter scalar signal s into 2depth bands of equal bandwith, using maximally flat filters.

6.20.3.24 firstmax

Syntax:

• [xpos, unit] = firstmax(s)

Give information about first local maximum of scalar signal s.

6.20.3.25 firstmin

Syntax:

• [xpos, unit] = firstmin(s)

Give information about first local minimum of scalar signal s.

6.20.3.26 firstzero

Syntax:

• [xpos, unit] = firstzero(s)

Give information about first zero of scalar signal s, using linear interpolation.

49

6.20.3.27 fracdims

Syntax:

• rs = fracdims(s, kmin, kmax, Nref, gstart, gend, past, steps)

• rs = fracdims(s, kmin, kmax, Nref, gstart, gend, past)

• rs = fracdims(s, kmin, kmax, Nref, gstart, gend)

Input arguments:

• kmin - minimal number of neighbors for each reference point

• kmax - maximal number of neighbors for each reference point

• Nref - number of randomly chosen reference points (n == -1 means : use all points)

• gstart - starting value for moments

• gend - end value for moments

• past - (optional) number of samples to exclude before and after each reference index, default is
0

• steps - (optional) number of moments to calculate, default is 32

Compute fractal dimension spectrum D(q) using moments of neighbor distances for time-delay re-
constructed timeseries s.

Do the main job - computing nearest neighbors for reference points.

6.20.3.28 getaxis

Syntax:

• a = getaxis(s, dim)

Get one of the currend xaxes.

6.20.3.29 gmi

Syntax:

• gmi(s, D, eps, NNR, len, Nref)

Input arguments:

• D -

• eps -

• NNR -

• len -

• Nref -

Generalized mutual information function for a scalar time series

50

6.20.3.30 histo

Syntax:

• histo(s, partitions)

Histogram function using equidistantly spaced partitions.

6.20.3.31 infodim

Syntax:

• rs = infodim(s, bins)

Input arguments:

• s - data points (row vectors)

• bins - maximal number of partition per axis, default is 100

Compute the information dimension of a time-delay reconstructed timeseries s for dimensions from 1
to D, where D is the dimension of the input vectors. Using boxcounting approach. Scale data to be
within 0 and 1. Give a sortiment of (integer) partitionsizes with almost exponential behaviour.

6.20.3.32 infodim2

Syntax:

• rs = infodim2(s, n, kmax, past)

Input arguments:

• n - number of randomly chosen reference points (n == -1 means : use all points)

• kmax - maximal number of neighbors for each reference point

• past - number of samples to exclude before and after each reference index

Compute scaling of moments of the nearest neighbor distances for time-delay reconstructed timeseries
s. This can be used to calculate information dimension D1.

Numerically compute first derivative of log γ(k) after k.

6.20.3.33 int

Syntax:

• int(s)

Numerical integration along dimension 1 signal s has to be sampled equidistantly.

51

6.20.3.34 intspikeint

Syntax:

• rs = intspikeint(s)

Compute the interspike intervalls for a spiked scalar timeseries, using transformation on ranked va-
lues.

6.20.3.35 intspikint

Syntax:

• rs = intspikeint(s)

Compute the interspike intervalls for a spiked scalar timeseries, using transformation on ranked va-
lues.

6.20.3.36 largelyap

Syntax:

• rs = largelyap(s, n, stepsahead, past, nnr)

Input arguments:

• n - number of randomly chosen reference points (-1 means: use all points)

• stepsahead - maximal length of prediction in samples

• past - exclude

• nnr - number of nearest neighbours (optional)

Output arguments:

• rs -

Compute the largest lyapunov exponent of a time-delay reconstructed timeseries s, using formula (1.5.
of Nonlinear Time-Series Analysis, Ulrich Parlitz 1998 [146]).

6.20.3.37 level adaption

Syntax:

• level adaption(s, timeconstants, dynamic limit, threshold)

Each channel of signal s is independently divided by a scaling factor that adapts to the current level
of the samples in this channel. The adaption process is simulated using a cascade of feedback loops
(Püschel 1998) which consists of low pass filters with time constants given as second argument to this
function. The number of time constants given determines the number of feedback loops that are used.

Higher values for time constants will result in slower adaption speed. Short time changes in the signal
will be transmitted almost linearily. In each feedback loop, a nonlinear compressing characteristic
(see Stefan Münkner 1993) limits the signal values to be within [-dynamic limit dynamic limit].
A low value for dynamic limit will introduce nonlinear distortions to the signal.

To prevent the feedback loops from adapting to a zero level (in case all input values are zero), a tiny
threshold is given as 4th argument. The scaling factors will not shrink below this threshold.

52

6.20.3.38 localdensity

Syntax:

• rs = localdensity(s, n, past)

Input arguments:

• n - number of nearest neighbour to compute

• past - a nearest neighbour is only valid if it is as least past timesteps away from the reference
point past = 1 means: use all points but ref point itself

Uses accelerated searching, distances are calculated with euclidian norm.

6.20.3.39 max

Syntax:

• [maximum, yunit, xpos, xunit] = max(s)

Give information about maximum of scalar signal s.

Example:

disp(’maximum of signal : ’)
disp([’y = ’ num2str(m) ’ ’ label(yunit(s))]);
disp([’x = ’ num2str(xpos) ’ ’ label(a)]);

6.20.3.40 medianfilt

Syntax:

• rs = medianfilt(s, len)

Moving median filter of width len samples for a scalar time series (len should be odd).

6.20.3.41 merge

Syntax:

• merge(signal1, signal2, dB)

• merge(signal1, signal2)

Input arguments:

• signal1, signal2 - Signals

• dB - energy ratio, (optional, default = 0)

Merges signal s1 and s2 into a new signal with energy ration dB (in decibel) a positive value of dB
increases the amount of signal1 in the resulting signal.

53

6.20.3.42 min

Syntax:

• [minimum, yunit, xpos, xunit] = min(s)

Give information about minimum of scalar signal s.

Example:

disp(’minimum of signal : ’)
disp([’y = ’ num2str(m) ’ ’ label(yunit(s))]);
disp([’x = ’ num2str(xpos) ’ ’ label(a)]);

6.20.3.43 minus

Syntax:

• rs=minus(s, offset)

• rs=minus(s1,s2)

Input arguments:

• s, s1, s2 - signal object

• offset - scalar value

Calculate difference of signals s1 and s2 or substract a scalar value from s.

6.20.3.44 movav

Syntax:

• rs = movav(s, len, windowtype)

• rs = movav(s, len)

Moving average of width len (samples) along first dimension.

6.20.3.45 multires

Syntax:

• rs = multires(s) => scale=3

• rs = multires(s, scale)

Multires perform multiresolution analysis. Y = MULTIRES (X,H,RH,G,RG,SC) obtains the SC succes-
sive details and the low frequency approximation of signal in X from a multiresolution scheme. The
analysis lowpass filter H, synthesis lowpass filter RH, analysis highpass filter G and synthesis highpass
filter RG are used to implement the scheme.

Results are given in a scale+1 channels. The first scale channels are the details corresponding to the
scales 21 to 2scale the last row contains the approximation at scale 2SC. The original signal can be
restored by summing all the channels of the resulting signal.

54

6.20.3.46 nearneigh

Syntax:

• rs = nearneigh(s, n) => past=1

• rs = nearneigh(s, n, past)

Input arguments:

• n - number of nearest neighbour to compute

• past - a nearest neighbour is only valid if it is as least past timesteps away from the reference
point. past = 1 means: use all points but ref point itself

n nearest neighbour algorithm. Find n nearest neighbours (in order of increasing distances) to each
point in signal s uses accelerated searching, distances are calculated with euclidian norm.

6.20.3.47 norm1

Syntax:

• rs=norm1(s) => low=0 , upp=1

• rs=norm1(s, low) => upp=1

• rs=norm1(s, low, upp)

Scale and move signal values to be within [low,upp].

6.20.3.48 norm2

Syntax:

• rs=norm2(s)

Normalize signal by removing it’s mean and dividing by the standard deviation.

6.20.3.49 pca

Syntax:

• [rs, eigvals, eigvecs] = pca(s) => mode=’normalized’ , maxpercent = 95

• [rs, eigvals, eigvecs] = pca(s, mode) => maxpercent = 95

• [rs, eigvals, eigvecs] = pca(s, mode, maxpercent)

Input arguments:

• each row of data is one ’observation’, e.g. the sample values of all channels in a multichannel
measurement at one point in time

• mode can be one of the following : ’normalized’ (default), ’mean’, ’raw’

55

– in mode ’normalized’ each column of data is centered by removing its mean and then
normalized by dividing through its standard deviation before the covariance matrix is cal-
culated

– in mode ’mean’ only the mean of every column of data is removed

– in mode ’raw’ no preprocessing is applied to data

• maxpercent gives the limit of the accumulated percentage of the resulting eigenvalues, default
is 95 %

Principal component analysis of column orientated data set.

6.20.3.50 plosivity

Syntax:

• rs = plosivity(s, blen) => flen=1 , thresh=0, windowtype = ’Rect’

• rs = plosivity(s, blen, flen) => thresh=0, windowtype = ’Rect’

• rs = plosivity(s, blen, flen, thresh) => windowtype = ’Rect’

• rs = plosivity(s, blen, flen, thresh, windowtype)

Compute plosivity of a spectrogram. See also: window for list of possible window types.

6.20.3.51 plus

Syntax:

• rs=plus(s, offset)

• rs=plus(s1, s2)

Add two signals s1 and s2 or add a scalar value offset to s.

6.20.3.52 poincare

Syntax:

• rs=poincare(s, ref)

Compute Poincare-section of an embedded time series the result is a set of vector points with dimension
DIM-1, when the input data set of vectors had dimension DIM. The projection is done orthogonal to
the tangential vector at the vector with index.

6.20.3.53 power

Syntax:

• power(s)

Calculate squared magnitude of each sample.

56

6.20.3.54 predict

Syntax:

• rs = predict(s, dim, delay, len) => nnr=1

• rs = predict(s, dim, delay, len, nnr) => mode=0

• rs = predict(s, dim, delay, len, nnr, mode)

Input arguments:

• dim - dimension for time-delay reconstruction

• delay - delay time (in samples) for time-delay reconstruction

• len - length of prediction (number of output values)

• nnr - number of nearest neighbors to use (default is one)

• step - stepsize (in samples) (default is one)

• mode:

– 0 = Output vectors are the mean of the images of the nearest neighbors
– 1 = Output vectors are the distance weighted mean of the images of the nearest neighbors
– 2 = Output vectors are calculated based on the local flow using the mean of the images of

the neighbors
– 3 = Output vectors are calculated based on the local flow using the weighted mean of the

images of the neighbors

Local constant iterative prediction for scalar data, using fast nearest neighbor search. Four methods
of computing the prediction output are possible.

6.20.3.55 predict2

Syntax:

• rs = predict2(s, len, nnr, step, mode)

Input arguments:

• len - length of prediction (number of output values)

• nnr - number of nearest neighbors to use (default is one)

• step - stepsize (in samples) (default is one)

• mode:

– 0 = Output vectors are the mean of the images of the nearest neighbors
– 1 = Output vectors are the distance weighted mean of the images of the nearest neighbors
– 2 = Output vectors are calculated based on the local flow using the mean of the images of

the neighbors
– 3 = Output vectors are calculated based on the local flow using the weighted mean of the

images of the neighbors

Local constant iterative prediction for phase space data (e.g. data stemming from a time delay
reconstruction of a scalar time series), using fast nearest neighbor search. Four methods of computing
the prediction output are possible.

57

6.20.3.56 rang

Syntax:

• rs = rang(s)

Transform scalar time series to rang values.

6.20.3.57 removeaxis

Syntax:

• s = removeaxis(s, dim)

Remove axis one of the current xaxes. No bound checking for dim.

6.20.3.58 return time

Syntax:

• rs = return time(s, nnr, maxT) => past=1

• rs = return time(s, nnr, maxT, past)

• rs = return time(s, nnr, maxT, past, N)

Input arguments:

• nnr - number of nearest neighbors

• maxT - maximal return time to consider

• past - a nearest neighbor is only valid if it is as least past timesteps away from the reference
point past = 1 means: use all points but tt ref point itself

• N - number of reference indices

Compute histogram of return times.

6.20.3.59 reverse

Syntax:

• rs=reverse(s)

Reverse signal along dimension 1.

6.20.3.60 rms

Syntax:

• rs = rms(s)

Calculate root mean square value for signal along dimension 1.

58

6.20.3.61 scale

Syntax:

• scale(signal, factor)

Scale signal by factor f.

6.20.3.62 scalogram

Syntax:

• rs = scalogram(s) => scalemin=0.1

• rs = scalogram(s, scalemin) => scalemax=1

• rs = scalogram(s, scalemin, scalemax) => scalestep=0.1

• rs = scalogram(s, scalemin, scalemax, scalestep) => mlen=10

• rs = scalogram(s, scalemin, scalemax, scalestep, mlen)

Scalogram of signal s using morlet wavelet. See also: spec2.

6.20.3.63 setaxis

Syntax:

• s = setaxis(s, dim, achse)

Change one of the current xaxes.

6.20.3.64 setunit

Syntax:

• s = setunir(s, dim, u)

Change unit of one of the current xaxes.

6.20.3.65 shift

Syntax:

• s = shift(s, distance) (dim=1)

• s = shift(s, distance, dim)

shift signal on axis No. dim by distance (measured in the unit of the axis) to the right

59

6.20.3.66 signal

Syntax:

• s = signal(array)

creates a new signal object from a data array array the data inside the object can be retrieved
with x = data(s);

• s = signal(array, achse1, achse2, ...)

creates a new signal object from a data array array, using achse1 etc. as xachse entries

• s = signal(array, unit1, unit2, ...)

creates a new signal object from a data array ’array’, using unit1 etc. to create xachse objects

• s = signal(array, samplerate1, samplerate2, ...)

creates a new signal object from a data array array, using as xunit ’s’ (second) and scalar
samplerate1 as samplerate(s)

A signal object contains signal data, that is a collection of real or complex valued samples. A signal
can be one or multi-dimensional. The number of dimensions is the number of axes that are needed to
describe the the data.

An example for an one-dimensional signal is a one-channel measurement (timeseries), or the power
spectrum of a one-channel measurement. An example for a two-dimensional signal is a twelve-channel
measurement, with one time axis and a ’channel’ axis. Another example for a two-dimensional signal
is a short time spectrogramm of a time series, where we have a time axis and a frequency axis.

Each axis can have a physical unit(e.g. ’s’ or ’Hz’), a starting point and a step value. E.g. if a
time-series is sampled with 1000 Hz, beginning at 1 min 12 sec, the unit is ’s’, the starting point is 72
and the step value (delta) is 0.001.

But not only the axes have physical units, also the sample value themselve can have a unit, maybe
’V’ or ’Pa’, depending on what the sampled data represent (=¿ yunit)

All units are stored as objects of class ’unit’, all axes are stored as objects of class ’achse’ (this
somewhat peculiar name was chosen because of conflicts with reserved matlab keywords ’axis’ and
’axes’, which otherwise would have been the first choice).

Example for creating a 2-dimensional signal with y-unit set to ’Volt’, the first dimension’s unit is
’second’ (time), the second dimension’s unit is ’n’ (Channels).

Examples:

• tmp = rand(100, 10);

s = signal(tmp, unit(’s’), unit(’n’));
s = setyunit(s, unit(’V’));
s = addcomment(s, ’Example signal with two dimensions’)

• Loading from disk

s = signal(filename)

loads a previously stored signal object

• Importing from other file formats:

ASCII: s = signal(’data/spalte1.dat’, ’ASCII’)
WAVE: s = signal(’data/Sounds/hat.wav’, ’WAVE’)
AU (SUN AUDIO): s = signal(’data/Sounds/hat.au’, ’AU’)
(old) NLD-Format : s = signal(’test.nld’, ’NLD’)

60

6.20.3.67 spacing

• v = spacing(s) (dim=1)

• v = spacing(s, dim)

return spacing values for xaxis nr. dim

6.20.3.68 spec

Syntax:

• rs = spec(s)

compute power spectrum for real valued scalar signals. Multivariate signals are accepted but may
produce unwanted results as only the spectrum of the first column is returned.

6.20.3.69 spec2

Syntax:

• rs = spec2(s)

Input Arguments:

• fensterlen - size of window (optional)

• fenster - window type (optional)

• vorschub - shift in samples (optional)

spectrogramm of signal s using short time fft

Examples:

view(spec2(sine(10000, 1000, 8000), 512, ’Hanning’))

6.20.3.70 stts

Syntax:

• rs = stts(s, I) (J=0, K=1, L=1)

• rs = stts(s, I, J) (K=1, L=1)

• rs = stts(s, I, J, K) (L=1)

• rs = stts(s, I, J, K, L)

Input Arguments:

• s - input data set of N snapshots of length M, given as N by M matrix

• I - number of spatial neighbours

• J - number of temporal neighbours (in the past)

• K - spatial shift (= spatial delay)

• L - temporal delay

Spatiotemporal prediction conforming to U. Parlitz, NONLINEAR TIME-SERIES ANALYSIS Chap-
ter 1.10.2.1.

61

6.20.3.71 sttserror

Syntax:

• rs = sttserror(s1, s2)

Input Arguments:

• s1 - original signal

• s2 - predicted signal

compute error function for prediction of spatial-temporal systems
see U. Parlitz "Nonlinear Time Series Analysis", Section 1.10.2.2 Eq. 1.10

6.20.3.72 surrogate1

Syntax:

• rs = surrogate1(s)

create surrogate data for a scalar time series by randomizing phases of fourier spectrum
see : James Theiler et al.’Using Surrogate Data to Detect Nonlinearity in Time Series’, APPENDIX
: ALGORITHM I

6.20.3.73 surrogate2

Syntax:

• rs = surrogate2(s)

create surrogate data for a scalar time series
see : James Theiler et al.’Using Surrogate Data to Detect Nonlinearity in Time Series’, APPENDIX
: ALGORITHM II

6.20.3.74 surrogate3

Syntax:

• rs = surrogate3(s)

create surrogate data for a scalar time series by permuting samples randomly

6.20.3.75 surrogate test

Syntax:

• rs=surrogate test(s, ntests, method,func)

Input Arguments:

• s - has to be a real, scalar signal

62

• ntests - is the number of surrogate data sets to create

• method - method to generate surrogate data sets:

– 1: surrogate1

– 2: surrogate2

– 3: surrogate3

• func - string with matlab-code, have to return a signal object with a scalar time series. The
data to process is a signal object referred by the qualifier s (see example).

Output Arguments:

• rs is a signal object with a three dimensional time series. The first component is the result of
the func function applied to the original data set s. The second component is the mean of the
result of the func function applied to the ntests surrogate data sets. The third component is
the standard deviation. There is a special plothint (’surrerrorbar’) for the view function to
show this result in the common way.

surrogate test runs an automatic surrogate data test task. It generates ntests surrogate data sets
an performs the func function to each set. func is a string with matlab-code who returns a signal s
with a scalar time series.

Example:

st = surrogate_test(s, 10, 1, 1, ’largelyap(embed(s,3,1,1), 128,20,10);’);

6.20.3.76 swap

Syntax:

• rs = swap(s) (exchange dimension 1 and dimension 2)

• rs = swap(s, dim1, dim2)

Exchange signal’s dimensions (and axes)

6.20.3.77 takens estimator

Syntax:

• D2 = takens estimator2(s, n, range, past)

Input Arguments:

• n - number of randomly chosen reference points (n == -1 means : use all points)

• range - maximal relative search radius (relative to attractor size) 0..1

• past - number of samples to exclude before and after each reference index

Takens estimator for correlation dimension

63

6.20.3.78 tc3

Syntax:

• rs = tc3(s,tau,n,method)

Input Arguments:

• tau - see explaination below

• n - number of surrogate data sets to generate

• method - method to generate the surrogate data sets:

– 1: surrogate1

– 2: surrogate2

– 3: surrogate3

Output Arguments:

• rs is a row vector, returned as signal object. The first item is the TC3 value for the original
data set s. The following n values are the TC3 values for the generated surrogates. There exist
a special plothint (’surrbar’) for the view function to show this kind of result in the common
way.

This function calculates a special value for the original data set and the n generated surrogate data
sets. The TC3 value is defined as followed:

TC3({xn}, τ) =
〈xnxn−τxn−2τ 〉
|〈xnxn−τ 〉|

3
2

In terms of surrogate data test this is a test statistics for higher order moments. The original tc3
function is located under utils/tc3.m and use simple matlab vectors.

6.20.3.79 trend

Syntax:

• rs = trend(s, len)

trend correction
calculate moving average of width len (samples) for a scalar time series (len should be odd) and
remove the result from the input signal

6.20.3.80 trev

Syntax:

• rs = trev(s,tau,n,method)

Input Arguments:

• tau - see explaination below

• n - number of surrogate data sets to generate

64

• method - method to generate the surrogate data sets:

– 1: surrogate1

– 2: surrogate2

– 3: surrogate3

Output Arguments:

• rs is a row vector, returned as signal object. The first item is the TREV value for the original
data set s. The following n values are the TREV values for the generated surrogates. There exist
a special plothint (’surrbar’) for the view function to show this kind of result in the common
way.

This function calculates a special value for the original data set and the n generated surrogate data
sets. The TREV value is defined as followed:

TREV ({xn}, τ) =
〈(xn − xn−τ)3〉
〈(xn − xn−τ)2〉 3

2

In terms of surrogate data test this is a test statistics for time reversibility. The original trev function
is located under utils/trev.m and use simple matlab vectors.

6.20.3.81 upsample

Syntax:

• rs = upsample(s, factor, method)

Input Arguments:

• method may be one of the following :

– ’fft’

– ’spline’

– ’akima’

– ’nearest’

– ’linear’

– ’cubic’

• s has be to sampled equidistantly for fft interpolation

Change sample rate of signal s by one-dimensional interpolation

6.20.3.82 view

Syntax:

• view(signal) (fontsize=12)

• view(signal, fontsize)

• view(signal, fontsize, figurehandle)

65

Signal viewer that decides from the signal’s attributes which kind of plot to produce, using the signal’s
plothint entry to get a hint which kind of plot to produce
Possible plothints are:

• ’graph’

• ’bar’

• ’surrbar’

• ’surrerrorbar’

• ’points’

• ’xyplot’

• ’xypoints’

• ’scatter’

• ’3dcurve’

• ’3dpoints’

• ’spectrogram’

• ’image’

• ’multigraph’

• ’multipoints’

• ’subplotgraph’

6.20.3.83 write

Syntax:

• write(s, filename) (writes in TSTOOL’s own file format)

• write(s, filename, ’ASCII’)

• write(s, filename, ’WAV’) (RIFF WAVE FORMAT)

• write(s, filename, ’AU’) (SUN AUDIO FORMAT)

• write(s, filename, ’NLD’) (old NLD FORMAT)

• write(s, filename, ’SIPP’) (si++ file format)

writes a signal object to file filename (uses matlab’s file format)

6.21 Class description

6.21.1 Overview

Class description is the second base class of class signal (cf. Section 6.20). An object of type description
stores all descriptive information belonging to a signal.

66

6.21.2 Attributes

• label - string

• name - string

• type - string

• plothint - string

• comment - object of type list (cf. Section 6.25)

• history - object of type list (cf. Section 6.25)

• creator - string

• yname - string

• yunit - object of type unit (cf. Section 6.24)

• commandlines - object of type list (cf. Section 6.25)

• optparam - cell array, may be used to store optional information

6.21.3 Member functions

6.21.3.1 addcommandlines

adds new commandline to list of commands that have been applied to that signal

example 1 addcommandlines(s, ’s = spec2(s’, 512, ’Hanning’)) will add ’s = spec2(s,
512, ’Hanning’);’ to the list of applied commands

example 2 len = 512; text = ’Hanning’; addcommandlines(s, ’s = spec2(s’, 512,
’Hanning’)) will add ’s = spec2(s, 512, ’Hanning’);’ to the list of applied commands

6.21.3.2 addcomment

adds new comment to current list of comments

6.21.3.3 addhistory

adds text to current history list always the current time and date is written into the first line

6.21.3.4 commandlines

6.21.3.5 comment

6.21.3.6 creator

6.21.3.7 description

description class constructor Syntax:

• d = description()

• d = description(name)

67

• d = description(name, type)

• d = description(yunit)

An object of class description contains auxiliary descriptive information for a signal, e.g. information
about data unit, creator, how the signal should be plotted, a user specified comment text, a processing
history and the commandlines that were used to generate this signal

6.21.3.8 display

description/display

6.21.3.9 history

description/history

6.21.3.10 label

6.21.3.11 makescript

Syntax:

• makescript (signal, scriptfilename)

creates a Matlab m-file that contains exactly the the processing steps that have been applied to get
the input signal. This gives a kind of macro facility for tstool.

Example signal s was calculated through several processing steps from signal s0 (the raw or original
signal) Now makescript(s, ’foo.m’) will create a Matlab m-file named foo.m which, applied
to s0, will give s.

6.21.3.12 merge

Syntax:

• d = merge(d1, d2)

merge two descriptions
Most items are taken from first description. History is taken from both descriptions. This function
may be useful when writing binary operators for class signal

6.21.3.13 name

description/name Syntax:

• n = name(d)

Get signal’s name

68

6.21.3.14 newcomment

Syntax:

• d = newcomment(d, string)

• d = newcomment(d, list)

Replace old comment with new comment

6.21.3.15 optparams

Syntax:

• param = optparams(d, nr)

get optional parameter number nr

6.21.3.16 plothint

6.21.3.17 setlabel

Syntax:

• d = setlabel(d, label)

the label field of a description is used to give a signal some ’tag’ which remains constant through
various processing steps
e.g. which topic this signal belongs to

6.21.3.18 setname

Syntax:

• d = setname(d, name)

the name field of a descriptiom is used when the signal is loaded from file, it will not be continued
through several processing steps

6.21.3.19 setoptparams

Syntax:

• d = setoptparams(d, nr, param)

set optional parameter number nr

6.21.3.20 setplothint

6.21.3.21 settype

Syntax:

• d = settype(d, string)

Set a new type for signal

69

6.21.3.22 setyname

Syntax:

• d = setyunit(d, string)

Set signal’s y-name
e.g. d = setyunit(d, ’V’)

6.21.3.23 setyunit

Syntax:

• d = setyunit(d, unit)

• d = setyunit(d, string)

Set signal’s y-unit
e.g. d = setyunit(d, ’V’)

6.21.3.24 type

return signal type (e.g. ’Correlation function’, ’Spectrogram’ etc.)

6.21.3.25 yname

return name of the measured data (e.g. ’Heartbeat rate’, ’Current’ etc.)

6.21.3.26 yunit

return y-unit of the sampled data values (e.g. Volt, Pa etc.)

6.22 Class core

6.22.1 Overview

Class core is a base class of class signal (cf. Section 6.20). An object of type core stores the pure sample
values of a signal, without any additional descriptive information. The separation of the numerical
and the descriptive part of a signal simplifies the writing of m-files that work on signals.

6.22.2 Attributes

• data - double matrix (one, two or multidimensional)

TSTOOL stores a one-dimensional time-series always as a row vector ! Rows correspond to the
first xaxis, columns to the second ...

• dlens - double vector, storing size of data

70

6.22.3 Member functions

6.22.3.1 acf

Syntax:

• acf(cin, m)

Input Arguments:

• cin core object

• m fft-length

acf calculates the autocorrelation function of cin via fft of length m.

6.22.3.2 amutual2

Syntax:

• amutual(cin, len)

Input Arguments:

• cin core object

• len maximal lag

amutual2 calculates the mutual information of a time series against itself, with increasing lag uses
equidistant partitioning to compute histograms.

6.22.3.3 compare

Syntax:

• compare(c1,c2, tolerance)

Input Arguments:

• c1,c2 core object of two signals

• tolerance tolerance of the signals’s RMS value (default tolerance=1e-6)

compare compare two signals whether they have equal values slight differences due to rounding errors
are ignored depending on the value of tolerance when signals are found to be not equal, a zero is
returned.

6.22.3.4 core

core class constructor Syntax:

• c = core(arg)

Input Arguments:

• arg double array

A core object contains the pure data part of a signal object.
Methods: ndim dlens data

71

6.22.3.5 data

Syntax:

• d = data(c, varargin)

• c=core object

Input Arguments:

• varargin - selector string for data-elements in matlab notation

Return signal’s data values
With no extra arguments, data returns the data array of a signal object
Another possible call is : data(signal, ’:,:,1:20’)

6.22.3.6 db

Syntax:

• cout = db(cin, ref, scf, dbmin)

Input Arguments:

• cin - core object

• ref - reference value

• scf - scaling factor

• dbmin - minimal db-value

compute decibel values to reference value ref and scaling factor (10 or 20) scf

6.22.3.7 diff

Syntax:

• cout = diff(cin, nth, delta)

Input Arguments:

• cin - core object

• nth - number of derivations

• delta - time difference between to signal values

nth numerical derivative along dimension 1 when data was sampled equidistantly with samplerate =
1/delta

72

6.22.3.8 display

Syntax:

• display(c)

Input Arguments:

• c - core object

6.22.3.9 dlens

Syntax:

• d=dlens(c, nr)

Input Arguments:

• c - core object

returns sizes of dimensions (same as function ’size’ under matlab)

6.22.3.10 embed

Syntax:

• cout = embed(cin, dim, delay, shift, windowtype)

Input Arguments:

• cin - core object

• dim - embed dimension

• delay - delay time in samples for time delay vectors

• shift - shift in samples for two sequent time delay vectors

• windowtype - type of window

Create time delay vectors with dimension dim, delay is measured in samples
The input must be a scalar time series
The result is a n by dim array, each row contains the coordinates of one point

6.22.3.11 filterbank

Syntax:

• filterbank(cin,H,G,ORDER,BASIS)

Input Arguments:

• H - lowpass filter

73

• G - highpass filter

• ORDER - indicates the type of tree:

– 0 - band sorting according to the filter bank
– 1 - band sorting according to the frequency decomposition

• BASIS - desired subband decomposition

calculates the Wavelet Packet Transform of cin. It can be obtained using a selection algorithm function.
It may be switched from one format to another using CHFORMAT. The different bands are sorted
according to ORDER and BASIS. If BASIS is omitted, the output is a matrix with the coefficients
obtained from all the wavelet packet basis in the library. Each column in the matrix represents the
outputs for a level in the tree. The first column is the original signal. If the length of X is not a power
of 2, the columns are zero padded to fit the different lengths. Run the script ’BASIS’ for help on the
basis format.
See also: IWPK, CHFORMAT, PRUNEADD, PRUNENON, GROWADD, GROWNON.

6.22.3.12 int

Syntax:

• cout = int(cin, delta)

Input Arguments:

• cin - core object

• delta - time period between two data samples

numerical integration along dimension 1 when data was sampled equidistantly with samplerate =
1/delta

6.22.3.13 intermutual

Syntax:

• intermutual(cin1,cin2,n)

Input Arguments:

• cin1,cin2 - core objects

Calculates the mutual information of cin1 and cin2.

6.22.3.14 isempty

Syntax:

• r = isempty(s)

Input Arguments:

• s - core object

test if core contains no (valid) data

74

6.22.3.15 medianfilt

Syntax:

• medianfilt(cin,len)

Input Arguments:

• cin - core object

moving median filter

6.22.3.16 minus

Syntax:

• minus(c1,c2)

Input Arguments:

• c1,c2 - core objects

subtract c2 from each columns of c1

6.22.3.17 movav

Syntax:

• movav(cin,len)

Input Arguments:

• cin - core object

• len - average length

moving average

6.22.3.18 multires

Syntax:

• multires(cin,h,rh,g,rg,sc)

Input Arguments:

• cin - core object

75

6.22.3.19 ndim

Syntax:

• ndim(c)

Input Arguments:

• c - core object

return number of dimensions, a scalar value has 0 dimensions

6.22.3.20 norm1

Syntax:

• cout = norm1(cin,low,upp)

Input Arguments:

• cin - core object

• low - column number

• upp - column number

normalize each single column of a the core object to be within [low,upp]

6.22.3.21 norm2

Syntax:

• cout = norm2(cin)

Input Arguments:

• cin - core object

normalize signal by removing it’s mean and dividing by the standard deviation

6.22.3.22 plus

Syntax:

• plus(c1,c2)

Input Arguments:

• c1,c2 - core objects

add c2 to each columns of c1

76

6.22.3.23 rang

Syntax:

• cout = rang(cin)

Input Arguments:

• cin - core object

6.22.3.24 rms

Syntax:

• cout = rms(cin)

Input Arguments:

• cin - core object

compute root mean square value of each column of c1

6.22.3.25 scalogram

Syntax:

• cout = scalogram(cin, smin, smax, sstep, tim)

6.22.3.26 spec

Syntax:

• cout = spec(cin)

Input Arguments:

• cin - core object

compute power spectrum for real valued signals

6.22.3.27 spec2

Syntax:

• cout = spec2(cin, fensterlen, fenster, vorschub)

Input Arguments:

• cin - core object

• fensterlen - window size

• fenster - type of window

• vorschub - moving step

spectrogramm of data using short time fft

77

6.22.3.28 surrogate1

Syntax:

• cout = surrogate1(cin)

Input Arguments:

• cin - core object

create surrogate data for a scalar time series by randomizing phases of fourier spectrum
see : James Theiler et al.’Using Surrogate Data to Detect Nonlinearity in Time Series’, APPENDIX
: ALGORITHM I

6.22.3.29 surrogate2

Syntax:

• cout = surrogate2(cin)

Input Arguments:

• cin - core object

create surrogate data for a scalar time series
see : James Theiler et al.’Using Surrogate Data to Detect Nonlinearity in Time Series’, APPENDIX
: ALGORITHM II

6.22.3.30 surrogate3

Syntax:

• cout = surrogate3(cin)

Input Arguments:

• cin - core object

create surrogate data for a scalar time series by permuting samples randomly

6.22.3.31 uminus

Syntax:

• r = uminus(c)

Input Arguments:

• c - core object

negate time series

78

6.22.3.32 vertcat

Syntax:

• r = vertcat(c1,c2)

Input Arguments:

• c1,c2 - core objects

catenate two timeseries verticaly

6.23 Class achse

6.23.1 Overview

Class achse models an axis, e.g. a time axis or a frequency axis. A signal has a least one axis (if it
is a one dimensional signal). A multidimensional signal has several achse objects. An achse object
is basically described by an object of class unit and the spacing values. The spacing may be linear,
logarithmic or arbitrary (in case of non-uniform sampling).

6.23.1.1 Why is class achse not called class axis ?

The names axis and axes are already occupied in Matlab. So, achse, which is the german translation
of axis, was used as name for that class.

6.23.2 Attributes

• name - string, name of axis (e.g. ’Time’)

• quantity - string

• unit - object of type unit (cf. Section 6.24)

• resolution - string, may be ’linear’, ’logarithmic’ or ’arbitrary’

• first - double value, starting value of this axis

• delta - double value, stepwidth for this axis

• values - double vector, stores spacing values in case of ’arbitrary’ resolution

• opt - cell array, may be used to store optional information

6.23.3 Member functions

6.23.3.1 achse

achse class constructor

Syntax:

• a = achse

creates default achse object

79

• a = achse(axs)

copies achse object axs into a

• a = achse(unt)

creates achse object using unit unt, with linear spacing, first = 0, delta = 1

• a = achse(vec)

creates achse object with arbitrary spacing, using values in vec as spacing data

• a = achse(unt, vec)

creates achse object using unit unt with arbitrary spacing, using values in vec as spacing data

• a = achse(unt, first, delta)

creates achse object with linear spacing, using delta and first

• a = achse(unt, first, delta, ’log’)

creates achse object with logarithmic spacing, using delta and first

achse used to describe the different dimensions (axes) of a signal object.

Example:

• a = achse(unit(’Hz’), 0.01, 10, ’log’)

creates a logarithmic frequency axis with values 0.01 Hz, 0.1 Hz, 1 Hz, 10 Hz

• a = achse(label, samplerate)

has the same result as

a = achse(unit(label), 0, 1/samplerate)

see also: delta first horzcat label name quantity resolution samplerate scale setname spacing unit

6.23.3.2 cut

Syntax:

• a = cut(a, start, stop)

Cut a part out of achse a, beginning from index start up to index stop. stop is only needed in case
of arbitrary spacing. cut ensures the following:

If values = spacing(achse1, N) and N > n then
values(n:N) == spacing(cut(achse1, n), N+1-n)

See also: horzcat

6.23.3.3 delta

6.23.3.4 display

6.23.3.5 eq

Test if achse a and achse b are equal.first is not (!) taken into account for this test.

80

6.23.3.6 first

6.23.3.7 horzcat

6.23.3.8 label

6.23.3.9 name

6.23.3.10 quantity

6.23.3.11 resolution

6.23.3.12 samplerate

Syntax:

• rate = samplerate(a)

samplerate returns samplerate of achse object.

6.23.3.13 scale

Syntax:

• r = scale(a,f)

Scale achses delta by factor f.

6.23.3.14 setdelta

Syntax:

• a = setdelta(a,f)

6.23.3.15 setfirst

Syntax:

• a = setfirst(a,f)

6.23.3.16 setname

Syntax:

• a = setname(a, newname)

6.23.3.17 setunit

Syntax:

• a = setunit(a,u)

81

6.23.3.18 setvalues

Syntax:

• a = setvalues(a, v)

6.23.3.19 spacing

Syntax:

• v = values(a, len)

Returns spacing values for linear, logarithmic or arbitary spacing in case of lin. or log. spacing. len
values are returned. In case of arbitary spacing, all stored values are returned.

6.23.3.20 unit

6.24 Class unit

6.24.1 Overview

Objects of class ’unit’ try to model physical units. It’s is possible to multiply or divide objects of this
type. A small database is used to find the right label for compound units.

See also : directory @unit/private, file units.mat

6.24.2 Attributes

• label - string

• name - string

• quantity - structure, holding two strings

• factor - double value

• exponents - vector

• dBScale - double value

• dBRef - double value

• opt - cell array, may be used to store optional information

6.24.3 Member functions

6.24.3.1 char

gives the unit’s label (e.g. V for Volt) back.

6.24.3.2 dbref

returns reference value for 0 dB when calculating decibel values from data of this unit.

82

6.24.3.3 dbscale

returns scaling value when calculating decibel values from data of this unit. dpscale returns either
10 (for power or energy units (e.g. Watt)) or 20 (for all other units (e.g. Volt).

6.24.3.4 display

6.24.3.5 double

gives a row vector which’s first element contains the unit’s factor and the remaining elements contain
the exponents of the SI basic units.

6.24.3.6 eq

6.24.3.7 exponents

returns dimension exponents of unit q.

6.24.3.8 factor

returns factor of unit q.

6.24.3.9 label

6.24.3.10 mpower

Syntax:

• mpower(u,p)

take unit u to power p, p must be a scalar.

6.24.3.11 mrdivide

6.24.3.12 mtimes

6.24.3.13 name

returns name of unit q.

6.24.3.14 quantity

returns quantity name of unit q. If argument which is omitted, the english quantity name will be
returned.

83

6.24.3.15 unit

unit class constructor

Class unit tries to modell physical units a physical unit is mainly can be described by the exponents
of the basic SI units, namely mass, length, time, current, temperature, luminal intensity, mole and
plane angle. Each unit belongs to a quantity, e.g. the unit s (second) is used when measuring the
quantity TIME. Each unit has a name, e.g. ’Ampere’, ’Volt’ , ’Joule’, ’hour’, and an abbreviation,
called label (’A’, ’V’, ’J’, ’h’). Unfortunately, the correspondence between these items is not always
bijectiv to find corresponding items, a table of units in the file units.mat is used.

A unit object can be created with different types of arguments:

• by giving the label: unit(’Hz’) looks up the remaining data (exponents, name, quantity) in the
table

• by giving the exponents

Some arithmetic can be done with units:

• units can be multiplied unit(’V’) * unit(’A’) = unit(’Watt’)

• or taken to an integer or rational power unit(’m’)2

6.25 Class list

6.25.1 Overview

Simple list of strings, used in class description (cf. Section 6.21).

6.25.2 Attributes

• data : cellarray of strings

• len : double value, counts number of strings in data

6.25.3 Member functions

6.25.3.1 append

Syntax:

• list = append(list, string)

• list = append(list, list)

Add string(s) to existing list.

6.25.3.2 cellstr

cellstr return cell array of strings from list l.

84

6.25.3.3 char

returns a char array from list l.

6.25.3.4 display

6.25.3.5 get

Syntax:

• s = get(l, nr)

returns string number nr from list l.

6.25.3.6 length

Syntax:

• len = length(l)

returns the number of strings in list l.

6.25.3.7 list

Syntax:

• l = list

creates empty list

• l = list(’Hello world’)

create list with one entry, ’Hello world’

• l = list(’Hello’, ’My’ , ’World’)

create list with three entries

• l = list(’Hello’, ’My’ , ’World’)

create list with three entries

An object of type list contains a list of strings.

6.25.3.8 sort

sort list l in increasing order.

85

Chapter 7

Frequently asked questions

7.1 Questions

1. Introduction and general information (cf. Section 7.2.1)

• What is TSTOOL ? (cf. Section 7.2.1.1)

• What software is required to run TSTOOL ? (cf. Section 7.2.1.2)

• On which systems does TSTOOL run ? (cf. Section 7.2.1.3)

• What about Octave or other Matlab like programming environments ? (cf. Section 7.2.1.4)

2. Installation of TSTOOL

• All lines in the OpenTSTOOL/tstoolbox/mex/*.m are comments, is this right? (cf. Sec-
tion 7.2.2.1)

• Where are the precompiled Mex-Files? (cf. Section 7.2.2.2)

• There are more than one file called e.g. amutual.m, why? (cf. Section 7.2.2.3)

• What does the error message ”Attempt to execute SCRIPT . . . as a function.” mean? (cf.
Section 7.2.2.4)

3. Working with TSTOOL (cf. Section 7.2.3)

• How do I create a signal from my time-series data ? (cf. Section 7.2.3.1)

• How do I create a signal with logarithmic spacing ? (cf. Section 7.2.3.2)

• How do I create a signal from non-uniformly sampled data ? (cf. Section 7.2.3.3)

• How do I change the type of plot that I get with view ? (cf. Section 7.2.3.4)

• What is class ’signal’ for ? (cf. Section 7.2.3.5)

• What is class ’core’ for ? (cf. Section 7.2.3.6)

• What is class ’description’ for ? (cf. Section 7.2.3.7)

• What is class ’achse’ for ? (cf. Section 7.2.3.8)

• Why is class ’achse’ called ’achse’ and not ’axis’ ? (cf. Section 7.2.3.9)

• What is class ’unit’ for ? (cf. Section 7.2.3.10)

• How is class ’unit’ used in TSTOOL ? (cf. Section 7.2.3.11)

4. Extending TSTOOL (cf. Section 7.2.4)

• How can I write a script to automatize common tasks ? (cf. Section 7.2.4.1)

• How can I write my own routines for the TSTOOL package ? (cf. Section 7.2.4.2)

87

5. Miscellaneous questions (cf. Section 7.2.5)

• What’s the difference between history and commandlines ? (cf. Section 7.2.5.1)

6. Frequently encountered errors (cf. Section 7.2.6)

• Using a column vector to create a one-dimensional signal (cf. Section 7.2.6.1)

• What does the error message ”Attempt to execute SCRIPT . . . as a function.” mean? (cf.
Section 7.2.2.4)

7.2 Answers

7.2.1 Introduction and general information

7.2.1.1 What is TSTOOL ?

TSTOOL is a software package for nonlinear time series analysis, though it has a lot of features a
general signal analysis package would also have.

7.2.1.2 What software is required to run TSTOOL ?

TSTOOL is written in MATLAB, a powerful language for scientific computing, and in C++. The-
refore you need MATLAB version 5.2 or higher to run tstool. Unfortunately, MATLAB is not free
software !

7.2.1.3 On which systems does TSTOOL run ?

TSTOOL does work on Windows 95/98/NT and SGI IRIX 6.5. It does not work on all platforms for
which MATLAB is available due to the use of mex-files, which are functions written in C or C++
that extend MATLAB’s set of build-in functions. However, these mex-files must be compiled for every
platform individually.

7.2.1.4 What about Octave or other Matlab like programming environments ?

Octave1 is a freely available language for scientific computing that strongly resembles MATLAB.
Unfortunately, Octave is not fully compatible to MATLAB, so TSTOOL does not work with Octave.

TSTOOL makes use of the object oriented features of MATLAB. In the current version of Octave
(2.0.14) there’s no full support of classes. Even if classes will be supported in future, it’s not sure
wheter TSTOOL will work properly.

There are several other Matlab like programming environments, e.g. Mideva2 or Scilab3. Up to now,
it is not possible to use TSTOOL with these packages.

7.2.2 Installation of TSTOOL

7.2.2.1 All lines in the OpenTSTOOL/tstoolbox/mex/*.m are comments, is this right?

Yes, this are the comment-texts for the compiled mex functions (e.g. type help amutual at the
matlab prompt).

1See URL http://www.che.wisc.edu/octave/
2See URL http://www.mathtools.com
3See URL http://www-rocq.inria.fr/scilab/

88

7.2.2.2 Where are the precompiled Mex-Files?

• Sun - OpenTSTOOL/tstoolbox/mex/mexsol/*.mexsol

• SGI - OpenTSTOOL/tstoolbox/mex/mexsg64/*.mexsg64

• Linux - OpenTSTOOL/tstoolbox/mex/mexglx/*.mexglx

• Windows - OpenTSTOOL/tstoolbox/mex/dll/*.dll

7.2.2.3 There are more than one file called e.g. amutual.m, why?

For some functions there are up to three versions of the file:

• OpenTSTOOL/tstoolbox/@signal/amutual.m Function that invokes the underlying mex func-
tion. It uses signal objects as output and input.

• OpenTSTOOL/tstoolbox/mex/amutual.m Help text for the compiled mex function (e.g. type
help amutual on the matlab prompt).

• OpenTSTOOL/tstoolbox/mex/mexsol/amutual.mexsol,

OpenTSTOOL/tstoolbox/mex/mexsg64/amutual.mexsg64,

OpenTSTOOL/tstoolbox/mex/mexglx/amutual.mexglx,

OpenTSTOOL/tstoolbox/mex/dll/amutual.dll

Precompiled mex files for Solaris, SGI, Linux x86 and Windows. Only one of this files may be
present on your system, depending on the Version of TSTOOL you have downloaded.

7.2.2.4 What does the error message ”Attempt to execute SCRIPT . . . as a function.”
mean?

Matlab cannot find the correct mex files for this systems and so it tries to execute the scripts OpenTS-
TOOL/mex/*.m (which are only the help texts for the mex files). There are many possibilities for
this error:

• You downloaded the wrong version of TSTOOL.

• The path setting made by settspath.m are not correct. Type path at the matlab prompt and
look for the path setting for the mex directory (see 7.2.2.3).

• The mex files are not present in the directory noted in 7.2.2.3.

7.2.3 Working with TSTOOL

7.2.3.1 How do I create a signal from my time-series data ?

Suppose the time-series data is given as the row vector y.

>> s = signal(y)
>> view(s)

If y is a column vector, the following syntax must be used:

>> s = signal(y’)
>> view(s)

Suppose the data was recorded with a samplerate of 8 kHz :

>> s = signal(y, 8000)
>> view(s)

89

7.2.3.2 How do I create a signal with logarithmic spacing ?

Suppose you have data vector y whose values were recorded at 3 Hz, 6 Hz, 12 Hz, 24 Hz ...

a = achse(unit(’Hz’), 3, 2, ’log’)
s = signal(y, a)
view(s)

7.2.3.3 How do I create a signal from non-uniformly sampled data ?

Suppose you have a data vector y (of length 4) whose values were recorded at 3 Hz, 5 Hz, 8 Hz, 14.5
Hz

a = achse(unit(’Hz’), [3 5 8 14.5])
s = signal(y, a)
view(s)

7.2.3.4 How do I change the type of plot that I get with view ?

The way view plots a signal depends on the attributes of the signal. It is possible to give view a hint
which type of plot to prefer. This hint can be set with the command setplothint. The possible plot
types can be obtained by issuing

help signal/view

at the Matlab prompt. However, if the signal does not support the desired type of plotting (e.g. a
one-dimensional time-series can not be visualized as orbit), view will use the default plot type for the
data.

s = signal(rand(1000, 3));
s = setplothint(s, ’3dpoints’);
view(s)

7.2.3.5 What is class ’signal’ for ?

Class signal is TSTOOL’s main class. Objects of this type model real world signals. A signal does not
only store the pure sample values, it holds much more information like axes, units of sample values
or the axes units, and even more descriptive information like labels, command lines and a processing
history.

The majority of functions in the tstoolbox take a signal as input argument and return a processed
signal as output. This allows for combining or chaining of several processing steps in order to get the
desired output.

7.2.3.6 What is class ’core’ for ?

Class core is a base class of class signal. An object of type core stores the pure sample values of
a signal, without any additional descriptive information. The separation of the numerical and the
descriptive part of a signal simplifies the writing of m-files that work on signals.

7.2.3.7 What is class ’description’ for ?

Class description is the second base class of class signal. An object of type description stores all
descriptive information belonging to a signal.

90

7.2.3.8 What is class ’achse’ for ?

Class achse models an axis, e.g. a time axis or a frequency axis. A signal has a least one axis (if it is a
one dimensional signal). A multidimensional signal has several achse objects, one for each dimension.
An achse object is basically described by an object of class unit and the spacing values. The spacing
may be linear, logarithmic or arbitrary (in case of non-uniform sampling).

7.2.3.9 Why is class ’achse’ called ’achse’ and not ’axis’ ?

The names axis and axes are already occupied in Matlab. So, achse, which is the german translation
of axis, was used as name for that class.

7.2.3.10 What is class ’unit’ for ?

Objects of class ’unit’ try to model physical units. No one wonders that his computer can multiply
real or complex numbers. But in physics or engineering, you also have to mulitply or divide physical
units, just think of Ohm’s law : R = U/I

7.2.3.11 How is class ’unit’ used in TSTOOL ?

Class unit is used as a part of every achse object and as part of a description object. Handling
and processing of units is optional for functions that work on signals, because many nonlinear signal
analysis functions do not allow consistent handling of units.

7.2.4 Extending TSTOOL

Of course it’s possible to extend TSTOOL with some custom functionality or to use parts of TSTOOL
in your own m-files, just as with other toolboxes for Matlab.

7.2.4.1 How can I write a script to automatize common tasks ?

One way to obtain a script is to execute the desired analysis steps with one example signal. The
output of this tasks will again be a signal that has stored the syntax of the executed steps in its
description. Using the command

commandlines(result)

will give you this syntax. With copy and paste, it’s possible to create a script file from that output.

7.2.4.2 How can I write my own routines for the TSTOOL package ?

Please refer to the upcoming programming manual for TSTOOL.

7.2.5 Miscellaneous questions

7.2.5.1 What’s the difference between history and commandlines ?

Both attributes of class description are used to record the processing history of a signal. But, while
history contains a list human readable entries, commandlines stores the exact syntax of the commands
that were applied to the signal.

91

7.2.6 Frequently encountered errors

7.2.6.1 Using a column vector to create a one-dimensional signal

TSTOOL stores one-dimensional signals always as row vectors. Giving a column vector will cause
unexpected behaviour with most routines that process signals:

>> s = signal(sin(0:0.5:100))
s = signal object

Dlens : 1 201
X-Axis 1 : |
X-Axis 2 : |

Name :
Type :

Attributes of data values :
|

Comment :

History :
16-Aug-1999 19:15:01 : Imported from MATLAB workspace

Instead, a row vector must be given to create the desired one-dimensional signal:

>> s = signal(sin(0:0.5:100)’)
s = signal object

Dlens : 201
X-Axis 1 : |

Name :
Type :

Attributes of data values :
|

Comment :

History :
16-Aug-1999 19:16:58 : Imported from MATLAB workspace

92

Bibliography

93

[1] Ott, E. (1993), Chaos in Dynamical Systems, Cambridge Cambridge, University Press.

[2] Thompson, J. M. T., H. B. Stewart (1986), Nonlinear Dynamics and Chaos, Chichester, Wiley.

[3] Schuster, H. G. (1988), Deterministic Chaos, 2nd ed., Weinheim, VHC Publishers.

[4] Bergé, P., Y. Pomeau, C. Vidal (1984), Order within Chaos: Towards a Deterministic Approach
to Turbulence, New York, John Wiley and Sons.

[5] Moon, F. C. (1992), Chaotic and Fractal Dynamics, New York, John Wiley and Sons.

[6] Gaponov-Grekhov, A. V., M. I. Rabinovich, (1992), Nonlinearities in Action – Oscillations,
Chaos, Order, Fractals, Berlin, Springer.

[7] Lauterborn, W., J. Holzfuss, (1991) , “Acoustic chaos”, Int. J. Bifurcation and Chaos, 1, pp.13-26.

[8] Lauterborn, W., T. Kurz, U. Parlitz, (1997), “Experimental Nonlinear Physics”, Int. J. Bifurca-
tion and Chaos, 7, pp.2003-2033.

[9] Lauterborn, W., U. Parlitz, (1988), “Methods of chaos physics and their application to acoustics”,
J. Acoust. Soc. Am., 84, pp.1975-1993.

[10] Packard, N.H., J.P. Crutchfield, J.D. Farmer, R.S. Shaw (1980), “Geometry from a time series”,
Phys. Rev. Lett., 45, pp.712-716.

[11] Takens, F. (1981), “Detecting strange attractors in turbulence”, in Dynamical Systems and Tur-
bulence, eds. Rand, D.A. & Young, L.-S. , Berlin, Springer, pp.366-381.

[12] Kantz, H., & T. Schreiber (1997), Nonlinear Time Series Analysis, Cambridge University Press,
Cambridge.

[13] Abarbanel, H.D.I. (1996), Analysis of Observed Chaotic Data, Springer, New York.

[14] Abarbanel, H.D.I., Brown, R., Sidorowich, J.J., & Tsimring, L.S. (1993), “The analysis of obser-
ved chaotic data in physical systems,” Rev. Mod. Phys., 65(4), pp.1331-1392.

[15] Grassberger, P., Schreiber, T. & Schaffrath, C. (1991), “Nonlinear time sequence analysis,” Int.
J. Bif. Chaos, 1(3), pp.521-547.

[16] Sauer, T., Y. Yorke, M. Casdagli (1991), “Embedology”, J. Stat. Phys., 65, pp.579-616.

[17] Sauer, T., J.A. Yorke (1993), “How many delay coordinates do you need ?”, Int. J. Bifurcation
and Chaos, 3, pp.737-744.

[18] Casdagli, M., S. Eubank, J.D. Farmer, J. Gibson (1991), “State space reconstruction in the
presence of noise”, Physica D, 51, pp.52-98.

[19] Gibson, J.F., J.D. Farmer, M. Casdagli, S. Eubank (1992), “An analytic approach to practical
state space reconstruction” Physica D, 57, pp.1-30.

[20] Broomhead, D.S., G.P. King (1986), “Extracting qualitative dynamics from experimental data”,
Physica D, 20, pp.217-236.

[21] Landa, P.S., M.G. Rosenblum (1991), “Time series analysis for system identification and diag-
nostics”, Physica D, 48, pp.232-254.

[22] Palus, M., I. Dvorak (1992), “Singular-value decomposition in attractor reconstruction: pitfalls
and precautions”, Physica D, 55, pp.221-234.

[23] Sauer, T.(1994), “Reconstruction of dynamical systems from interspike intervals”, Phys. Rev.
Lett., 72, pp.3811-3814.

[24] Castro, R., T. Sauer (1997), “Correlation dimension of attractors through interspike intervals”,
Phys. Rev. E, 55(1), pp.287-290.

94

[25] Racicot, D.M., A. Longtin (1997), “Interspike interval attractors from chaotically driven neuron
models”, Physica D, 104, pp.184-204.

[26] Stark, J., D.S. Broomhead, M.E. Davies, J. Huke (1996), “Takens embedding theorems for forced
and stochastic systems”, in: Proceedings of the 2nd World Congress of Nonlinear Analysts,
Athens, greece, July 1996.

[27] Kennedy, M.P. (1994), “Chaos in the Colpitts oscilator”, IEEE Trans. Circuits Syst., 41(11),
pp.771-774.

[28] Cenys, A., K. Pyragas (1988), “Estimation of the number of degrees of freedom from chaotic time
series”, Phys. Lett. A, 129, pp.227-230.

[29] Buzug, Th., T. Reimers, G. Pfister (1990), “Optimal reconstruction of strange Attractors from
purely geometrical arguments”, Europhys. Lett., 13, pp.605-610.

[30] Alecsić, Z. (1991), “Estimating the embedding dimension”, Physica D, 52, pp.362-368.

[31] Buzug, Th., G. Pfister (1992), “Optimal delay time and embedding dimension for delay-time
coordinates by analysis of the global static and local dynamical behavior of strange attractors”,
Phys. Rev. A, 45, pp.7073-7084.

[32] Gao, J., Z. Zheng (1993), “Local exponential divergence plot and optimal embedding of a chaotic
time series”, Phys. Lett. A, 181, pp.153-158.

[33] Gao, J., Z. Zheng (1994). “Direct dynamical test for deterministic chaos and optimal embedding
of a chaotic time series”, Phys. Rev. E, 49, pp.3807-3814.

[34] Huerta, R., C. Santa Cruz, J.R. Dorronsore, V. Lòpez (1995), “Local state-space reconstruction
using averaged scalar products of dynamical-system flow vectors”, Europhys. Lett., 29, pp.13-18.

[35] Liebert, W., K. Pawelzik, H.G. Schuster (1991), “Optimal embeddings of chaotic attractors from
topological considerations”, Europhys. Lett., 14, pp.521-526.

[36] Kennel, M.B., R. Brown, H.D.I. Abarbanel (1992), “Determining embedding dimension for phase-
space reconstruction using a geometrical construction”, Phys. Rev. A, 45, pp.3403-3411.

[37] Fredkin, D.R., J.A. Rice (1995), “Method of false nearest neigbors: a cautionary note”, Phys.
Rev. E, 51(4), pp. 2950-2954.

[38] Cao, L. (1997), “Practical method for determining the minimum embedding dimension of a scalar
time series”, Physcai D, 110, pp. 43-50.

[39] Kember, G., A.C. Fowler (1993), “A correlation function for choosing time delays in phase portrait
reconstructions”, Phys. Lett. A, 179, pp.72-80.

[40] Rosenstein, M.T., J.J. Collins, C.J. De Luca (1994), “Reconstruction expansion as a geometry-
based framework for choosing proper delay times”, Physica D, 73, pp.82-98.

[41] Frazer, A.M., H.L. Swinney (1986), “Independent coordinates in strange attractors from mutual
information”, Phys. Rev. A, 33, pp.1134-1140.

[42] Frazer, A.M. (1989), “Reconstructing attractors from scalar time series: a comparison of singular
system and redundancy criteria”, Physica D, 34, pp.391-404.

[43] Frazer, A.M. (1989), “Information and entropy in strange attractors”, IEEE Trans. Info. Theory,
35, pp.245-262.

[44] Liebert, W., H.G. Schuster (1989), “Proper choice of the time delay for the analysis of chaotic
time series”, Phys. Lett. A, 142, pp.107-111.

[45] Martinerie, J.M., A.M. Albano, A.I. Mees, P.E. Rapp (1992), “Mutual information, strange
attractors, and the optimal estimation of dimension”, Phys. Rev. A, 45, pp.7058-7064.

95

[46] Broomhead, D.S., J.P. Huke, M.R. Muldoon (1992), “Linear filters and nonlinear systems”, J.
Roy. Stat. Soc., B54, pp.373-382.

[47] Davies, M.E., & K.M. Campbell (1996), “Linear recursive filters and nonlinear dynamics” Non-
linearity, 9, pp.487-499.

[48] Kaplan, D., T. Schreiber (1996), “Signal separation by nonlinear projections: The fetal electro-
cardiogram”, Phys. Rev. E, 53(5), pp.R4326-R4329.

[49] Grassberger, P., R. Hegger, H. Kantz, C. Schaffrath, T. Schreiber (1993), “On noise reduction
methods for chaotic data” CHAOS, 3, pp.127-141.

[50] Kantz, H., T. Schreiber, I. Hoffmann, T. Buzug, G. Pfister, C.G. Flepp, J. Simonet, R. Badii,
E. Brun (1993), “Nonlinear noise reduction: A case study on experimental data”, Phys. Rev. E,
48, pp.1529-1538.

[51] Kostelich, E.J.,T. Schreiber (1993), “Noise reduction in chaotic time-series data: A survey of
common methods”, Phys. Rev. E, 48, pp.1752-1763.

[52] Theiler, J., B. Galdrikian, A. Longtin, S. Eubank, J.D. Farmer (1992), “Using surrogate data to
detect nonlinearity in time series” in: Nonlinear Modeling and Forecasting, eds. M. Casdagli and
S. Eubank, SFI Studies in the Sciences of Complexity, Vol.XII (Reading, MA,Addison-Wesley),
pp.163-188.

[53] Theiler, J., S. Eubank, A. Longtin, B. Galdrikian, J.D. Farmer (1992), “Testing for nonlinearity
in time series: the method of surrogate data”, Physica D, 58, pp.77-94.

[54] Provenzale, A., L.A. Smith, R. Vio, G. Murante (1992), “Distiguishing between low-dimensional
dynamics and randomness in measured time series”, Physica D, 58, pp.31-49.

[55] Smith, L. (1992), “Identification and prediction of low dimensional dynamics”, Physica D, 58,
pp.50-76.

[56] Takens, F. (1993), “Detecting nonlinearities in stationary time series”, Int. J. of Bifurcation and
Chaos, 3, pp.241-256.

[57] Wayland, R., D. Bromley, D. Pickett, A. Passamante (1993), “Recognizing determinism in a time
series”, Phys. Rev. Lett., 70, pp.580-582.

[58] Palus, M., V. Albrecht,I. Dvorak (1993), “Information theoretic test for nonlinearity in time
series”, Phys. Lett. A, 175, pp.203-209.

[59] Kaplan, D. (1994), “Exceptional events as evidence for determinism”, Physica D, 73, pp.38-48.

[60] Salvino, L.W., R. Cawley (1994), “Smoothness implies determinism: a method to detect it in
time series”, Phys. Rev. Lett., 73, pp.1091-1094.

[61] Savit, R.M. Green (1991), “Time series and dependent variables”, Physica D, 50, pp.95-116.

[62] Rapp, P.E., A.M. Albano, I.D. Zimmerman, M.A. Jiménez-Moltaño (1994), “Phase-randomized
surrogates can produce spurious identifications of non-random structure”, Phys. Lett. A, 192,
pp.27-33.

[63] Theiler, J. (1995), “On the evidence for low-dimensional chaos in an epileptic electroencephalo-
gram”, Phys. Lett. A, 196, pp.335-341.

[64] Schreiber, T., A. Schmitz (1996), “Improved surrogate data for nonlinearity tests”, Phys. Rev.
Lett., 77(4), pp.635-638.

[65] Schreiber. T (1998), “Constrained randomization of time series data”, Phys. Rev. Lett., 80(10),
pp.2105-2108.

[66] Judd, K., A. Mees (1995), “On selecting models for nonlinear time series”, Physica D, 82, pp.
426-444.

96

[67] Aguirre, L.A., S.A. Billings (1995), “Identification of models for chaotic systems from noisy data:
implications for performance and nonlinear filtering”, Physica D, 85, pp. 239-258.

[68] Aguirre, L.A., E.M.A.M. Mendes (1996), “Global nonlinear polynomial models: structure, term
clustering and fixed points”, Int. J. Bifurc. Chaos, 6(2), pp.279-294.

[69] Allie, S., A. Mees, K. Judd, D. Watson (1997), “Reconstructing noisy dynamical systems by
triangulation”, Phys. Rev. E, 55(1), pp. 87-93.

[70] Szpiro, G.G. (1997), “Forecasting chaotic time series with genetic algorithms”, Phys. Rev. E,
55(3), pp. 2557-2568.

[71] Jaeger, L., H. Kantz (1997), “Effective deterministic models for chaotic dynamics perturbed by
noise”, Phys. Rev. E, 55(5), pp. 5234-5247.

[72] Farmer, J.D., J.J. Sidorowich (1987), “Predicting chaotic time series”, Phys. Rev. Lett., 59,
pp.845-848.

[73] Casdagli, M. (1989), “Nonlinear Prediction of chaotic time series”, Physica D, 35, pp.335-356.

[74] Brown, R. N.F. Rulkov, E.R. Tracy (1994), “Modeling and synchronizing chaotic systems from
time-series data”, Phys. Rev. E, 49, pp.3784-3800.

[75] Grassberger, P., I. Procaccia (1983), “On the characterization of strange attractors”, Phys. Rev.
Lett., 50, pp.346-349.

[76] Theiler, J. (1986), “Spurious dimension from correlation algorithms applied to limited time-series
data”, Phys. Rev. A, 34, pp.2427-2431.

[77] Badii, R., A. Politi (1984), “Hausdorff dimension and uniformity factor of strange attractors”,
Phys. Rev. Lett, 52, pp.1661-1664.

[78] Badii, R., A. Politi (1985), “Statistical description of chaotic attractors”, J. Stat. Phys., 40,
pp.725-750.

[79] Grassberger, P. (1985), “Generalizations of the Hausdorff dimension of fractal measures”, Phys.
Lett. A, 107, pp.101-105.

[80] Schreiber, T. (1995), “Efficient neighbor searching in nonlinear times series analysis”, Int. J.
Bifurcation and Chaos, 5, pp.349-358.

[81] Holzfuss, J., G. Mayer-Kress (1986), “An approach to error-estimation in the application of
dimension algorithms”, in [82], pp.114-122.

[82] Mayer-Kress, G. (ed.) (1986), Dimensions and Entropies in Chaotic Systems – Quantification of
Complex Behavior, Berlin, Springer.

[83] Theiler, J. (1990), “Estimating fractal dimension”, J. Opt. Soc. Am. A, 7, pp.1055-1073.

[84] Broggi, G. (1988), “Evaluation of dimensions and entropies of chaotic systems”, J. Opt. Soc. Am.
B, 5, pp.1020-1028.

[85] Oseledec, V.I. (1968), “A multiplicative ergodic theorem. Lyapunov characteristic numbers for
dynamical systems”, Trans. Moscow Math. Soc., 19, pp.197-231.

[86] Benettin, G., L. Galgani, A. Giorgilli, J.-M. Strelcyn (1980), “Lyapunov characteristic exponents
for smooth dynamical systems and for hamiltonian systems; a method for computing all of them.
Part II: Numerical application ” Meccanica, 15, pp.21-30.

[87] Shimada, I., T. Nagashima (1979), “A numerical approach to ergodic problems of dissipative
dynamical systems”, Prog. Theor. Phys., 61, pp.1605-1616.

[88] Eckmann, J.-P., D. Ruelle (1985), “Ergodic theory of chaos and strange attractors”, Rev. Mod.
Phys., 57, pp.617-656.

97

[89] Geist, K., U. Parlitz, W. Lauterborn (1990), “Comparison of Different Methods for Computing
Lyapunov Exponents”, Prog. Theor. Phys., 83, pp.875-893.

[90] Wolf, A., J.B. Swift, L. Swinney, J.A. Vastano (1985), “Determining Lyapunov exponents from
a time series”, Physica D, 16, pp.285-317.

[91] Sano, M., Y. Sawada (1985), “Measurement of the Lyapunov spectrum from a chaotic time series”,
Phys. Rev. Lett., 55, pp.1082-1085.

[92] Eckmann, J.-P., S.O. Kamphorst, D. Ruelle, S. Ciliberto (1986), “Lyapunov exponents from time
series”, Phys. Rev. A, 34, pp.4971-4979.

[93] Stoop, R., P.F. Meier (1988), “Evaluation of Lyapunov exponents and scaling functions from time
series”, J. Opt. Soc. Am. B, 5, pp.1037-1045.

[94] Holzfuss, J., W. Lauterborn (1989), “Liapunov exponents from a time series of acoustic chaos”,
Phys. Rev. A, 39, pp.2146-2152.

[95] Stoop, R., J. Parisi (1991), “Calculation of Lyapunov exponents avoiding spurious elements”,
Physica D, 50, pp.89-94.

[96] Zeng, X., R. Eykholt, R.A. Pielke (1991), “Estimating the Lyapunov-exponent spectrum from
short time series of low precision”, Phys. Rev. Lett., 66, pp.3229-3232.

[97] Zeng, X., R.A. Pielke, R. Eykholt (1992), “Extracting Lyapunov exponents from short time series
of low precision”, Modern Phys. Lett. B, 6, pp.55-75.

[98] Parlitz, U. (1993), “Lyapunov exponents from Chua’s circuit”, J. Circuits, Systems and Compu-
ters, 3,pp.507-523.

[99] Kruel, Th.M., M. Eiswirth, F.W. Schneider (1993), “Computation of Lyapunov spectra: Effect
of interactive noise and application to a chemical oscillator”, Physica D, 63, pp.117-137.

[100] Briggs, K. (1990), “An improved method for estimating Liapunov exponents of chaotic time
series”, Phys. Lett. A, 151, pp.27-32.

[101] Bryant, P., R. Brown, H.D.I. Abarbanel (1990), “Lyapunov exponents from observed time se-
ries”, Phys. Rev. Lett., 65, pp.1523-1526.

[102] Brown, R., P. Bryant, H.D.I. Abarbanel (1991), “Computing the Lyapunov spectrum of a dy-
namical system from an observed time series”, Phys. Rev. A, 43, pp.2787-2806.

[103] Abarbanel, H.D.I., R. Brown, M.B. Kennel (1991), “Lyapunov exponents in chaotic systems:
their importance and their evaluation using observed data”, Int. J. Mod. Phys. B, 5, pp.1347-
1375.

[104] Holzfuss, J, U. Parlitz (1991), “Lyapunov exponents from time series”, Proceedings of the Confe-
rence Lyapunov Exponents, Oberwolfach 1990, eds. L. Arnold, H. Crauel, J.-P. Eckmann, in:
Lecture Notes in Mathematics, Springer Verlag.

[105] Parlitz, U. (1992), “Identification of true and spurios Lyapunov exponents from time series”,
Int. J. Bifurcation and Chaos, 2, pp.155-165.

[106] Kadtke, J.B., J. Brush, J. Holzfuss (1993), “Global dynamical equations and Lyapunov expo-
nents from noisy chaotic time series”, Int. J. Bifurcation Chaos, 3, pp.607-616.

[107] Gencay, R., W.D. Dechert (1992), “An algorithm for the n Lyapunov exponents of an n-
dimensional unknown dynamical system”, Physica D, 59, pp.142-157.

[108] Eckmann, J.-P., D. Ruelle (1992), “Fundamental limitations for estimating dimensions and
Lyapunov exponents in dynamical systems”, Physica D, 56, pp.185-187.

98

[109] Ellner, S., A.R. Gallant, D. McCaffrey, D. Nychka (1991), “Convergence rates and data require-
ments for Jacobian-based estimates of Lyapunov exponents from data”, Phys. Lett. A, 153,pp.357-
363.

[110] Fell, J., J. Röschke, P. Beckmann (1993), “Deterministic chaos and the first positive Lyapunov
exponent: a nonlinear analysis of the human electroencephalogram during sleep”, Biol. Cybern.,
69, pp.139-146.

[111] Fell, J., P. Beckmann (1994), “Resonance-like phenomena in Lyapunov calculations from data
reconstructed by the time-delay method” Phys. Lett. A, 190, pp.172-176.

[112] Sato, S., M. Sano, Y. Sawada (1987), “Practical methods of measuring the generalized dimension
and largest Lyapunov exponent in high dimensional chaotic systems”, Prog. Theor. Phys., 77,
pp.1-5.

[113] Kurths, J., H. Herzel (1987), “An attractor in solar time series”, Physica D, 25, pp.165-172.

[114] Dämmig, M., F. Mitschke (1993), “Estimation of Lyapunov exponents from time series: the
stochastic case”, Phys. Lett. A, 178, pp.385-394.

[115] Rosenstein, M.T., J.J. Collins, C.J. de Luca (1993), “A practical method for calculating largest
Lyapunov exponents from small data sets”, Physica D, 65, pp.117.

[116] Kantz, H. (1994), “A robust method to estimate the maximal Lyapunov exponent of a time
series”, Phys. Lett. A, 185, pp.77-87.

[117] Fujisaka, H.,T. Yamada (1993), “Stability theory of synchronized motion in coupled-oscillator
systems,” Prog. Theor. Phys., 69, pp.32-46.

[118] Singer, W. (1993), “Synchronization of cortical activity and its putative role in information
processing and learning,” Annu. Rev. Physiol., 55, pp.349-374.

[119] Ashwin, P., J. Buescu, I. Stewart (1994), “Bubbling of attractors and synchronisation of chaotic
oscillators,” Phys. Lett. A, 193,pp.126-139.

[120] Heagy, J.F., T.L. Carroll, L.M. Pecora (1994), “Synchronous chaos in coupled oscillator sys-
tems,” Phys. Rev. E, 50, pp.1874-1885.

[121] Lai, Y.-C., C. Grebogi (1994), “Synchronization of spatiotemporal chaotic systems by feedback
control,” Phys. Rev. E, 50,pp.1894-1899.

[122] Collins, J.J.,I. Stewart (1994), “A group-theoretic approach to rings of coupled biological oscil-
lators,” Biol. Cybern., 71, pp.95-103.

[123] Lindner, J.F., B.K. Meadows, W.L. Ditto, M.E. Inchiosa, A.R. Bulsara (1995), “Array enhanced
stochastic resonance and spatiotemporal synchronization,” Phys. Rev. Lett., 75, pp.3-6.

[124] Braiman, Y., W.L. Ditto, K. Wiesenfeld, M.L. Spano (1995), “Disorder-enhanced synchroni-
zation,” Phys. Lett. A 206, pp.54-60; Braiman, Y., J.F. Lindner, W.L. Ditto (1995), “Taming
spatiotemporal chaos with disorder,” Nature, 378, pp.465-467.

[125] Pecora, L.M., T.L. Carroll (1990), “Synchronization in chaotic systems,” Phys. Rev. Lett., 64,
pp.821-824.

[126] Brown, R., N.F. Rulkov, E.R. Tracy (1994), “Modelling and synchronizing chaotic systems from
experimental data,” Phys. Lett. A, 194, pp.71-76.

[127] Kocarev. L., U. Parlitz (1995), “General approach for chaotic synchronization with applications
to communication”, Phys. Rev. Lett., 74(25), pp.5028-5031.

[128] Parlitz, U., L. Junge, L. Kocarev, (1996), “Synchronization based parameter estimation from
time series”, Phys. Rev. E, 54, pp.6253-6529.

99

[129] Parlitz, U., L. Kocarev, T. Stojanovski, H. Preckel (1996), “Encoding messages using chaotic
synchronization,” Phys. Rev. E, 53(5), pp.4351-4361.

[130] Rulkov, N.F., K.M. Sushchik, L.S. Tsimring, H.D.I. Abarbanel, (1995), “Generalized synchro-
nization of chaos in directionally coupled chaotic systems,” Phys. Rev. E, 51, pp.980-994.

[131] Kocarev, L., U. Parlitz (1996), “Generalized synchronization, predictability and equivalence of
uni-directionally coupled dynamical systems”, Phys. Rev. Lett., 76(11), pp.1816-1819.

[132] Abarbanel, H.D.I., N.F. Rulkov, M.M. Sushchik (1996), “Generalized synchronization of chaos:
The auxiliary system approach”, Phys. Rev. E, 53(5), pp.4528-4535.

[133] Parlitz, U., L. Junge, L. Kocarev (1997), “Subharmonic entrainment of unstable period orbits
and generalized synchronization”, Phys. Rev. Lett., 79(17), pp.3158.

[134] Parlitz, U., L. Kocarev (1998), “Synchronization of chaotic systems”, in: “Control of Chaos”
Handbook (Ed. H.-G. Schuster), WILEY-VCH.

[135] Sirovich, L. (1989), ‘Chaotic dynamics of coherent structures”, Physica D, 37, pp. 126-145.

[136] Rico-Martinez, R., K. Krischer, I.G. Kevrekidis, M.C. Kube, J.L. Hudson, (1992), “Discrete
- vs. continuous-time nonlinear signal processing of Cu electrodissolution data,” Chem. Eng.
Comm. 118, pp.25-48.

[137] Parlitz, U. & G. Mayer-Kress (1995), “Predicting low-dimensional spatiotemporal dynamics
using discrete wavelet transforms”, Phys. Rev. E, 51(4), pp.R2709-R2711.

[138] H.D.I. Abarbanel, Analysis of Observed Chaotic Data, (Springer Verlag, New-
York/Berlin/Heidelberg, 1996);

[139] S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman and A. Wu An Optimal Algorithm for
Approximate Nearest Neighbor Searching in Fixed Dimensions,, (Proc. of the Fifth Annual ACM–
SIAM Symp. on Discrete Algorithms, 1994, pp. 573-582)

[140] A. Belussi and C. Faloutsos Estimating the Selectivity of Spatial Queries Using the ‘Correlation’
Fractal Dimension, (Conference Proceedings of VLDB, Zurich, Switzerland, Sept. 1995, pp. 299-
310)

[141] S. Berchtold, C. Böhm, D.A. Keim and H.P. Kriegl A cost model for nearest neighbor search in
high-dimensional data space, (PODS’97, Tuscon, AZ, pp. 78-86)

[142] P. Grassberger, R. Hegger, H. Kantz, C. Schaffrath and T. Schreiber On noise reduction methods
for chaotic data, (Chaos, Vol. 3, Nr. 2, 1993, pp. 127-141)

[143] T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia, and B.I. Shraiman Fractal measures and
their singularities: The characterization of strange sets, (Phys. Rev. A Vol. 33, Nr. 2, 1986, pp.
1141-1151)

[144] H. Kantz and T. Schreiber, Nonlinear Time Series Analysis, (Cambridge UP, Cambridge, 1997).

[145] J. McNames A Nearest Trajectory Strategy for Time Series Prediction, (Proc. of the Internatio-
nal Workshop on Advanced Black-box Techniques for Nonlinear Modeling, 1998, pp. 112-128)

[146] U. Parlitz Nonlinear Time-Series Analysis, in (Nonlinear Modeling - Advanced Black-Box Tech-
niques Eds. J.A.K. Suykens and J. Vandewalle Kluwer Academic Publishers, 1998, pp. 209-239)

[147] V. Pestov On the geometry of similarity search : dimensionality curse and contraction of mea-
sure,, (Maths and comp. science research report, 99-02, VUW, January 1999, pp. 7), submitted
for publication

[148] T. Schreiber Efficient neighbor searching in nonlinear time-series analysis,, (Int. J. Bifurcation
and Chaos, 5, pp. 349-358)

100

[149] R. Sedgewick Algorithms in C++, Third Edition, (Addison-Wesley, 1998)

[150] W. van de Water and P. Schram Generalized dimensions from near-neighbor information, (Phys.
Rev. A, Vol. 37, Nr. 8, 1988, pp. 3318-3125)

[151] L. F. Shampine and M. K. Gordon, “The inital value problem”

101

	At a glance
	Download and Installation
	Installation
	Windows
	Unix
	Global installation

	First Steps
	Pitfalls
	Copyright notice

	First Steps
	Example analysis of a time-series from a chaotic Colpitts oscillator

	Nearest Neighbors Searching
	Definition
	Approximate nearest neighbors searching
	Range searching
	Matlab mex-functions
	nn_prepare
	nn_search
	range_search

	Example session

	Handling the Graphical User Interface
	Filelist
	Figure
	Menus
	Signal
	Methods I
	Methods II
	Utilities
	Modify
	Macro
	Options
	Help
	View

	Mex-Function Reference
	akimaspline - Cubic spline interpolation using Akima splines
	amutual - compute auto mutual information function
	baker - Generate Baker time-series
	boxcount - Classical boxcounting algorithm
	cao - Determine minimum embedding dimension by Cao's method
	chaosys - integrate dynamical system given by a set of ordinary differential equations
	corrsum - Computation of the correlation sum
	corrsum2 - Computation of the correlation sum
	fnearneigh - Fast nearest neighbor search
	gendimest - Estimate generalized dimension spectrum
	henon - Generate henon time-series
	largelyap - Compute separation of nearby trajectories
	nn_prepare - Do nearest neighbor preprocessing
	nn_search
	predict
	range_search
	return_time
	takens_estimator
	tentmap - Generate tentmap time-series
	Class signal
	Overview
	Attributes
	Member functions

	Class description
	Overview
	Attributes
	Member functions

	Class core
	Overview
	Attributes
	Member functions

	Class achse
	Overview
	Attributes
	Member functions

	Class unit
	Overview
	Attributes
	Member functions

	Class list
	Overview
	Attributes
	Member functions

	Frequently asked questions
	Questions
	Answers
	Introduction and general information
	Installation of TSTOOL
	Working with TSTOOL
	Extending TSTOOL
	Miscellaneous questions
	Frequently encountered errors

